Skip to main content
Log in

Calmodulin-dependent protein kinase II

Multifunctional roles in neuronal differentiation and synaptic plasticity

  • Basic Molecular Aspects of Synaptic Plasticity
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

One of the most important mechanisms for regulating neuronal functions is through second messenger cascades that control protein kinases and the subsequent phosphorylation of substrate proteins. Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is the most abundant protein kinase in mammalian brain tissues, and the α-subunit of this kinase is the major protein and enzymatic molecule of synaptic junctions in many brain regions. CaM-kinase II regulates itself through a complex autophosphorylation mechanism whereby it becomes calcium-independent following its initial activation. This property has implicated CaM-kinase II as a potential molecular switch at central nervous system (CNS) synapses. Recent studies have suggested that CaM-kinase II is involved in many diverse phenomena such as epilepsy, sensory deprivation, ischemia, synapse formation, synaptic transmission, long-term potentiation, learning, and memory.

During brain development, the expression of CaM-kinase II at both protein and mRNA levels coincides with the active periods of synapse formation and, therefore, factors regulating the genes encoding kinase subunits may play a role in the cell-to-cell recognition events that underlie neuronal differentiation and the establishment of mature synaptic functions. Recent findings have demonstrated that the mRNA encoding the α-subunit of CaM-kinase II is localized in neuronal dendrites. Current speculation suggests that the localized translation of dendritic mRNAs encoding specific synaptic proteins may be responsible for producing synapse-specific changes associated with the processing, storage, and retrieval of information in neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahler M. and Greengard P. (1987) Synapsin I bundles F-actin in a phosphorylation dependent manner.Nature 326, 704–707.

    PubMed  CAS  Google Scholar 

  • Baitinger C., Alderton J., Poenie M., Schulman H., and Steinhardt R. A. (1990) Multifunctional Ca2+/calmodulin-dependent protein kinase is necessary for nuclear envelope breakdown.J. Cell Biol. 111, 1763–1773.

    PubMed  CAS  Google Scholar 

  • Banker G. A. and Cowan W. M. (1977) Rat hippocampal neurons in dispersed cell culture.Brain Res. 126, 397–425.

    PubMed  CAS  Google Scholar 

  • Bartlett W. P. and Banker G. A. (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture II. Synaptic relationships.J. Neurosci. 4, 1954–1965.

    PubMed  CAS  Google Scholar 

  • Bekkers J. M. and Stevens C. F. (1990) Presynaptic mechanism for long-term potentiation in the hippocampus.Nature 346, 724–729.

    PubMed  CAS  Google Scholar 

  • Bennett M. K., Erondu N. E., and Kennedy M. B. (1983) Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain.J. Biol. Chem. 258, 12,735–12,744.

    CAS  Google Scholar 

  • Bennett M. K. and Kennedy M. B. (1987) Deduced primary structure of the beta-subunit of brain type II Ca2+/calmodulin-dependent protein kinase determined by molecular cloning.Proc. Natl. Acad. Sci. USA 84 (4), 1794–1798.

    PubMed  CAS  Google Scholar 

  • Bensen D. L., Isackson P. J., Gall C. M., and Jones E. G. (1991) Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin dependent protein kinase gene expression in adult monkey visual cortex.J. Neurosci. 11, 31–47.

    Google Scholar 

  • Black M. M. and Baas P. W. (1989) The basis of polarity in neurons.Trends Neurosci. 12, 211–214.

    PubMed  CAS  Google Scholar 

  • Bloch B., Guitteny A. F., Normand E., and Chouham S. (1990) Presence of neuropeptide mRNAs in neuronal processes.Neurosci. Lett. 109, 259–264.

    PubMed  CAS  Google Scholar 

  • Bruckenstein D. A., Lein P. J., Higgins D., and Fremeau R. T. (1990) Distinct spatial localization of specific mRNAs in cultured sympathetic neurons.Neuron 5, 808–819.

    Google Scholar 

  • Brugg B. and Matus A. (1990) Interaction of MAP2 with the neuronal cytoskeleton.Soc. Neurosci. Abst. 16, 83.3.

    Google Scholar 

  • Bulleit R. F., Bennett M. K., Molloy S. S., Hurley J. B., and Kennedy M. B. (1988) Conserved and variable regions in the subunits of brain type II Ca2+/calmodulin-dependent protein kinase.Neuron 1, 63–72.

    PubMed  CAS  Google Scholar 

  • Burgin K. E. (1989) Ca2+/Calmodulin Dependent Protein Kinase II: mRNA in Developing Rat Brain. University of Texas Medical School, Houston, TX.

    Google Scholar 

  • Burgin K. E., Waxham M. N., Rickling S., Westgate S. A., Mobley W. C., and Kelly P. T. (1990) In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain.J. Neurosci. 10, 1788–1798.

    PubMed  CAS  Google Scholar 

  • Celander D. W. and Cech T. R. (1991) Visualizing the higher order folding of a catalytic RNA molecule.Science 251, 401–407.

    PubMed  CAS  Google Scholar 

  • Collingridge G. L., Herron C. E., and Lester R. A. J. (1988) Frequency-dependent NMDA receptor-mediated synaptic transmission in rat hippocampus.J. Physiol. 399, 301–312.

    PubMed  CAS  Google Scholar 

  • Collingridge G. L. and Singer W. (1990) Excitatory amino acid receptors and synaptic plasticity.Trends Pharmacol. Sci. 11, 290–296.

    PubMed  CAS  Google Scholar 

  • Dash P. K., Karl K. A., Colicos M. A., Prywes R., and Kandel E. R. (1991) cAMP response element-binding protein is activated by calcium/calmodulin-as well as cAMP-dependent protein kinases.Proc. Natl. Acad. Sci. USA 88, 5061–5065.

    PubMed  CAS  Google Scholar 

  • Davis L., Banker G. A., and Steward O. (1987) Selective dendritic transport of RNA in hippocampal neurons in culture.Nature 330, 477–479.

    PubMed  CAS  Google Scholar 

  • Davis L., Burger B., Banker G. A., and Steward O. (1990) Dendritic transport: Quantitative analysis of the time course of somatodendritic transport of recently synthesized RNA.J. Neurosci. 10, 3056–3068.

    PubMed  CAS  Google Scholar 

  • Davis L. and Kater S. B. (1990) Local protein synthesis within isolated growth cones of cultured snail neurons.Soc. Neurosci. Abstr. 16, 961.

    Google Scholar 

  • Deadwyler S. A., Dunwiddie T., and Lynch G. (1987) A critical level of protein synthesis is required for long-term potentiation.Synapse 1, 90–95.

    PubMed  CAS  Google Scholar 

  • Dirks R. W., Raap A. K., Van Minnen L., Vreugdenhil E., Smit A., and Van der Ploeg M. (1989) Detection of mRNA molecules coding for neuropeptide hormones of the pond snail,Lymnaea stagnalis by radioactive and non-radioacitive in situ hybridization: a model study for mRNA detection.J. Histochem. Cytochem. 37, 7–14.

    PubMed  CAS  Google Scholar 

  • Dumas S., Javoy-Agid F., Hirsch E., Agid Y., and Mallet J. (1990) Tyrosine hydroxylase gene expression in human ventral mesencephalon: detection of tyrosine hydroxylase mRNA in neurites.J. Neurosci. Res. 25, 569–575.

    PubMed  CAS  Google Scholar 

  • Dunkley P. R., Baker C. M., and Robinson P. J. (1986) Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: characterization of active protein kinases by phosphopeptide analysis of substrates.J. Neurochem. 46, 1692–1703.

    PubMed  CAS  Google Scholar 

  • Erondu N. E. and Kennedy M. B. (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain.J. Neurosci. 5, 3270–3277.

    PubMed  CAS  Google Scholar 

  • Fong, Y.-L., and Soderling, T. R. (1990) Studies on the regulatory domain of Ca2+/calmodulin-dependent protein kinase II: Functional analyses of arginine-283 using synthetic peptides and site-directed mutagenesis of the alpha-subunit.J. Biol. Chem. 265, 11,091–11,097.

    CAS  Google Scholar 

  • Fong Y.-L., Taylor W. L., Means A. R., and Soderling T. R. (1989) Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II.J. Biol. Chem. 264, 16,759–16,763.

    CAS  Google Scholar 

  • Frey U., Krug M., Brodemann R., Reymann K., and Matthies H. (1989) Long-term potentiation induced in dendrites separated from rat's CA1 pyramidal somata does not establish a late phase.Neurosci. Lett. 97, 135–139.

    PubMed  CAS  Google Scholar 

  • Frey U., Krug M., Reymann K. G., and Matthies H. (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of homo- and heterosynaptic long-term potentiation in the hippocampus CA1-region in vitro.Brain Res. 452, 57–65.

    PubMed  CAS  Google Scholar 

  • Fukunaga K., Rich D. P., and Soderling T. R. (1989) Generation of the Ca2+-independent form of Ca2+/calmodulin-dependent protein kinase II in cerebellar granule cells.J. Biol. Chem. 264, 21,830–21,836.

    CAS  Google Scholar 

  • Garner C. C. and Matus A. (1988) Different forms of microtubule-associated protein 2 are encoded by separate mRNA transcripts.J. Cell Biol. 106, 779–783.

    PubMed  CAS  Google Scholar 

  • Garner C. C., Tucker R. P., and Matus A. (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites.Nature (Lond.) 336, 674–677.

    CAS  Google Scholar 

  • Goldenring J. R., Lasher R. S., Vallano M. L., Ueda T., Naito S., Sternberger N. H., Sternberger L. A., and DeLorenzo R. J. (1986) Association of synapsin I with neuronal cytoskeleton: Identification of cytoskeletal preparationsin vitro and immunocytochemical localization in brain.J. Biol. Chem. 261, 8495–8504.

    PubMed  CAS  Google Scholar 

  • Goldenring J. R., McGuire J. S., and DeLorenzo R. J. (1984) Identification of the major postsynaptic density protein as homologous with the major calmodulin-binding subunit of a calmodulin-dependent protein kinase.J. Neurochem. 42, 1077–1084.

    PubMed  CAS  Google Scholar 

  • Goldenring J. R., Wasterlain C. G., Oestreicher A. B., de Graan P. N. E., Farber D. B., Glaser G., and DeLorenzo R. J. (1986) Kindling induces a long-lasting change in the activity of a hippocampal membrane calmodulin-dependent protein kinase system.Brain Res. 377, 47–53.

    PubMed  CAS  Google Scholar 

  • Grab D. J., Carlin R. K., and Siekevitz P. (1981) Function of calmodulin in postsynaptic densities. II. Presence of a calmodulin-activatable protein kinase activity.J. Cell Biol. 89, 440–448.

    PubMed  CAS  Google Scholar 

  • Greengard P., Jen J., Naim A., and Stevens C. (1991) Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons.Science 253, 1135–1138.

    PubMed  CAS  Google Scholar 

  • Groswald D. W., Montgomery P. R., and Kelly P. T. (1983) Synaptic junctions isolated from cerebellum and forebrain: Comparisons of morphological and molecular properties.Brain Res. 287, 63–80.

    Google Scholar 

  • Gurd J. and Bissoon N. (1990) Phosphorylation of proteins of the postsynaptic density: effect of development on protein tyrosine kinase and phosphorylation of the postsynaptic density glycoprotein, PSD-GP180.J. Neurosci. Res. 25, 336–344.

    PubMed  CAS  Google Scholar 

  • Gurd J. W. (1985) Phosphorylation of the postsynaptic density glycoprotein GP-180 by Ca2+/calmodulin-dependent protein kinase.J. Neurochem. 45, 1128–1135.

    PubMed  CAS  Google Scholar 

  • Gurd J. W. and Bissoon N. (1985)In vivo Phosphorylation of the postsynaptic density glycoprotein GP-180.J. Neurochem. 45, 1136–1140.

    PubMed  CAS  Google Scholar 

  • Gurd J. W., Bissoon N., and Kelly P. T. (1983a) Synaptic junctional glycoproteins are phosphorylated by cyclic-AMP-dependent protein kinase.Brain Res. 269, 287–296.

    PubMed  CAS  Google Scholar 

  • Gurd J. W., Gordon-Weeks P., and Evans W. H. (1983b) Identification and localization of concanavalin A binding sites on isolated postsynaptic densities.Brain Res. 276, 141–146.

    PubMed  CAS  Google Scholar 

  • Hackett J. T., Cochran S. L., Greenfield L. J., Brosius D. C., and Ueda T. (1990) Synapsin I injected presynaptically into goldfish Mauthner axons reduces quantal synaptic transmission.J. Neurophys. 63, 701–706.

    CAS  Google Scholar 

  • Hanley R. M., Means A. R., Ono T., Kemp B. E., Burgin K. E., Waxham M. N., and Kelly P. T. (1987) Functional analysis of a complementary DNA for the 50-kilodalton subunit of calmodulin kinase II.Science 237, 293–297.

    PubMed  CAS  Google Scholar 

  • Hardie G. (1988) Pseudosubstrates turn off protein kinases.Nature (Lond.) 335, 592,593.

    CAS  Google Scholar 

  • Hendry S. H. C., and Kennedy M. B. (1986) Immunoreactivity for a calmodulin-dependent protein kinase is selectively increased in macaque striate cortex after monocular deprivation.Proc. Natl. Acad. Sci. USA 83, 1536–1540.

    PubMed  CAS  Google Scholar 

  • Hershey J. W. B. (1989) Protein phosphorylation controls translation rates.J. Biol. Chem. 264, 20,823–20,826.

    CAS  Google Scholar 

  • House C. and Kemp B. E. (1987) Protein kinase C contains a pseudosubstrate prototype in its regulatory domain.Science 238, 1726–1728.

    PubMed  CAS  Google Scholar 

  • Jirikowski F. D., Sanna P. P., and Bloom F. E. (1990) mRNA ecoding for oxytocin is present in axons of the hypothalamo-neurohypophysial tract.Proc. Natl. Acad. Sci. USA 87, 7400–7404.

    PubMed  CAS  Google Scholar 

  • Kelly P., Honeycutt T., Weinberger R., Blumenthal D., Yip R., and Waxham N. (1989) Functional analysis of the calmodulin (CaM)-binding domain of CaM-kinase II using synthetic peptides and site-directed mutagenesis.Soc. Neurosci. Abstr. 15, 381.7.

    Google Scholar 

  • Kelly P. and Montgomery P. (1982) Subcellular localization of the 52,000 molecular weight major postsynaptic density protein.Brain Res. 233, 265–286.

    PubMed  CAS  Google Scholar 

  • Kelly P. T. and Cotman C. W. (1976) Intermolecular disulfide bonds of central nervous system synaptic junctions.Biochem. Biophys. Res. Comm. 73, 858–864.

    PubMed  CAS  Google Scholar 

  • Kelly P. T. and Cotman C. W. (1977) Identification of glycoproteins and proteins at synapses in the central nervous system.J. Biol. Chem. 252, 786–793.

    PubMed  CAS  Google Scholar 

  • Kelly P. T. and Cotman C. W. (1978) Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide.J. Cell Biol. 79, 173–183.

    PubMed  CAS  Google Scholar 

  • Kelly P. T. and Cotman C. W. (1981) Developmental changes in morphology and molecular composition of isolated synaptic junctional structures.Brain Res. 206, 251–271.

    PubMed  CAS  Google Scholar 

  • Kelly P. T., Cotman C. W., Gentry C., and Nicolson G. L. (1976) Distribution and mobility of lectin receptors on synaptic membranes of identified neurons in the central nervous system.J. Cell Biol. 71, 487–496.

    PubMed  CAS  Google Scholar 

  • Kelly P. T., McGuinness T. L., and Greengard P. (1984) Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA 81, 945–949.

    PubMed  CAS  Google Scholar 

  • Kelly P. T., Shields S., Conway K., Yip R., and Burgin K. (1987) Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: Alterations in holoenzyme composition.J. Neurochem. 49, 1927–1940.

    PubMed  CAS  Google Scholar 

  • Kelly P. T. and Vernon P. (1985) Changes in the subcellular distribution of calmodulin-kinase II during brain development.Dev. Brain Res. 18, 211–224.

    CAS  Google Scholar 

  • Kelly P. T., Weinberger R. P., and Waxham M. N. (1988) Active site-directed inhibition of Ca2+/calmodulin-dependent protein kinase type II by a bifunctional calmodulin-binding peptide.Proc. Natl. Acad. Sci. USA 85, 4991–4995.

    PubMed  CAS  Google Scholar 

  • Kelly P. T., Yip R. K., Shields S. M., and Hay M. (1985) Calmodulin-dependent protein phosphorylation in synaptic junctions.J. Neurochem. 45, 1620–1634.

    PubMed  CAS  Google Scholar 

  • Kennedy M. B. (1987) Molecules underlying memory.Nature (Lond.) 239, 15,16.

    Google Scholar 

  • Kennedy M. B., Bennett M. K., and Erondu N. E. (1983a) Biochemical and immunochemical evidence that the major postsynaptic density protein is a subunit of a calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA 80, 7357–7361.

    PubMed  CAS  Google Scholar 

  • Kennedy M. B., McGuinness T., and Greengard P. (1983b) A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin I: Partial purification and characterization.J. Neurosci. 3, 818–831.

    PubMed  CAS  Google Scholar 

  • Kleiman R., Banker G., and Steward O. (1990) Differential subcellular localization of particular mRNAs in hippocampal neurons in culture.Neuron 5, 821–830.

    PubMed  CAS  Google Scholar 

  • Koenig E. (1979) Ribosomal RNA in Mauthner axon: Implications for a protein synthesizing machinery in the myelinated axon.Brain Res. 174, 95–107.

    PubMed  CAS  Google Scholar 

  • Kuret J. and Schulman H. (1985) Mechanism of autophosphorylation of the multifunctional Ca2+/ calmodulin-dependent protein kinase.J. Biol. Chem. 260, 6427–6433.

    PubMed  CAS  Google Scholar 

  • Lai Y., Nairn A. C., Gorelick F., and Greengard P. (1987) Ca2+/calmodulin-dependent protein kinase II: Identification of autophosphorylation sites responsible for generation of Ca2+/calmodulin-independence.Proc. Natl. Acad. Sci. USA 84, 5710–5714.

    PubMed  CAS  Google Scholar 

  • Lai Y., Nairn A. C., and Greengard P. (1986) Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II.Proc. Natl. Acad. Sci. USA 83, 4253–4257.

    PubMed  CAS  Google Scholar 

  • Leahy J. and Vallano M. (1991) Differential effects of isoquinolinesulfonamide protein kinase inhibitors on CA1 responses in hippocampal slices.Neuro science 44, 361–370.

    CAS  Google Scholar 

  • Lickteig R., Shenolikar S., Denner L., and Kelly P. T. (1988) Regulation of Ca2+/calmodulin-dependent protein kinase II by Ca2+/calmodulin-independent autophosphorylation.J. Biol. Chem. 263, 19,232–19,239.

    CAS  Google Scholar 

  • Lin C. R., Kapiloff M. S., Durgerian S., Tatemoto K., Russo A. F., Hanson P., Schulman H., and Rosenfeld M. G. (1987) Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA 84, 5962–5966.

    PubMed  CAS  Google Scholar 

  • Lin J.-W., Sugimori M., Llinas R. R., McGuinness T. L., and Greengard P. (1990) Effects of synapsin I and calcium/calmodulin-dependent protein kinase II on spontaneous neurotransmitter release in the squid giant synapse.Proc. Natl. Acad. Sci. USA 87, 8257–8261.

    PubMed  CAS  Google Scholar 

  • Lisman J. (1989) A mechanism for the Hebb and anti-Hebb processes underlying learning and memory.Proc. Natl. Acad. Sci. USA 86, 9574–9578.

    PubMed  CAS  Google Scholar 

  • Lisman J. E. (1985) A mechanism for memory storage insensitive to molecular turnover: A bistable auto-phosphorylating kinase.Proc. Natl. Acad. Sci. USA 82, 3055–3057.

    PubMed  CAS  Google Scholar 

  • Lisman J. E. and Goldring M. A. (1988) Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density.Proc. Natl. Acad. Sci. USA 85, 5320–5324.

    PubMed  CAS  Google Scholar 

  • Llinas R., McGuinness T. L., Leonard C. S., Sugimori M., and Greengard P. (1985) Intraterminal injection of synapsin I or Ca2+/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse.Proc. Natl. Acad. Sci. USA 82, 3035–3039.

    PubMed  CAS  Google Scholar 

  • Lou L. L., Lloyd S. J., and Schulman H. (1986) Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme.Proc. Natl. Acad. Sci. USA 83, 9497–9501.

    PubMed  CAS  Google Scholar 

  • Lynch G., Larson J., Kelso S., Barrionuevo G., and Schottler F. (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation.Nature (Lond.) 305, 719–721.

    CAS  Google Scholar 

  • MacDonald J. F., Mody I., and Salter M. W. (1989) Regulation of NMDA receptors revealed by intracellular dialysis of murine neurons in culture.J. Physiol. 414, 17–34.

    PubMed  CAS  Google Scholar 

  • Malenka R. C. (1991) Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus.Neuron 6, 53–60.

    PubMed  CAS  Google Scholar 

  • Malenka R. C., Kauer J. A., Perkel D. J., Mauk M. D., Kelly P. T., Nicoll R. A., and Waxham M. N. (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation.Nature (Lond.) 340, 554–557.

    CAS  Google Scholar 

  • Malenka R. C., Kauer J. A., Zucker R. S., and Nicoll R. A. (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission.Science 242, 81–84.

    PubMed  CAS  Google Scholar 

  • Malinow R., Madison D. V., and Tsien R. W. (1988) Persistent protein kinase activity underlying longterm potentiation.Nature (Lond.) 335, 820–824.

    CAS  Google Scholar 

  • Malinow R., Schulman H., and Tsien R. W. (1989) Inhibition of postsynaptic PKC or CaM−KII blocks induction but not expression of LTP.Science 245, 862–866.

    PubMed  CAS  Google Scholar 

  • Malinow R. and Tsien R. W. (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices.Nature (Lond.) 346, 177–180.

    CAS  Google Scholar 

  • McGuinness T. L., Lai Y., and Greengard P. (1985) Ca2+/calmodulin-dependent protein kinase II: Isozymic forms from rat forebrain and cerebellum.J. Biol. Chem. 260, 1696–1704.

    PubMed  CAS  Google Scholar 

  • McGuinness T. L., Lai Y., Greengard P., Woodgett J. R., and Cohen P. (1983) A multifunctional calmodulin-dependent protein kinase: Similarities between skeletal muscle glycogen synthase kinase and a brain synapsin I kinase.FEBS Lett. 163 (2), 329–334.

    PubMed  CAS  Google Scholar 

  • Mclntosh J. R. and Porter M. E. (1989) Enzymes for microtubule-dependent motility.J. Biol. Chem. 264, 6001–6004.

    Google Scholar 

  • Miller S. G., and Kennedy M. B. (1985) Distinct forebrain and cerebellar isozymes of type-II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction.J. Biol. Chem. 260, 9039–9046.

    PubMed  CAS  Google Scholar 

  • Miller S. G. and Kennedy M. B. (1986) Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: A Ca2+-triggered molecular switch.Cell 44, 861–870.

    PubMed  CAS  Google Scholar 

  • Miller S. G., Patton B. L., and Kennedy M. B. (1988) Sequences of autophosphorylation sites in neuronal type II CaM-kinase that control Ca2+-independent activity.Neuron 1, 593–604.

    PubMed  CAS  Google Scholar 

  • Molloy S. S. and Kennedy M. B. (1991) Autophosphorylation of type II Ca2+/calmodulin-dependent protein kinase in cultures of postnatal rat hippocampal slices.Proc. Natl. Acad. Sci. USA 88, 4756–4760.

    PubMed  CAS  Google Scholar 

  • Morales M. and Fifkova E. (1989) Distribution of MAP2 in dendritic spines and its colocalization with actin.Cell Tissue Res. 256, 447–456.

    PubMed  CAS  Google Scholar 

  • Muller D., Buchs P.-A., Dumant Y., and Lynch G. (1990) Protein kinase C activity is not responsible for the expression of long-term potentiation in the hippo-campus.Proc. Natl. Acad. Sci. USA 87, 4073–4077.

    PubMed  CAS  Google Scholar 

  • Nairn A. C. and Palfrey C. (1987) Identification of the major 100 kDa substrate for calmodulin-dependent protein kinase III in mammalian cells as elongation factor-2.J. Biol. Chem. 262, 17,299–17,303.

    CAS  Google Scholar 

  • Neary J. T. and Alkon D. L. (1986) Protein phosphorylation and associative learning in Hermissenda.Acta Biochim. Biophys. Hung. 21, 159–176.

    PubMed  CAS  Google Scholar 

  • Nichols R. A., Sihra T. S., Czernik A. J., Nairn A. C., and Greengard P. (1990) Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes.Nature (Lond.) 343, 647–651.

    CAS  Google Scholar 

  • Nicoll R. A., Kauer J. A., and Malenka R. C. (1988) The current excitement in long-term potentiation.Neuron 1, 93–103.

    Google Scholar 

  • Nomura Y., Kitamura Y., Tohda M., Miyazaki A., and Urushihara H. (1991) Enhancement of NMDA receptor/ion channel function by beta-type of PKC in rat brain.J. Neurochem. 57 (Suppl.), S56.

    Google Scholar 

  • O'Dell T., Kandel E., and Grant S. (1991) Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors.Nature (Lond.) 353, 558–560.

    Google Scholar 

  • Ocorr K. A. and Schulman H. (1991) Activation of multifunctional Ca2+/calmodulin-dependent kinase in intact hippocampal slices.Neuron 6, 907–914.

    PubMed  CAS  Google Scholar 

  • Ohta Y., Nishida F., and Sakai H. (1986) Type II Ca2+/calmodulin-dependent protein kinase binds to actin filaments in a calmodulin-sensitive manner.FEBS Lett. 208, 423–426.

    PubMed  CAS  Google Scholar 

  • Otani S., Marshall C. J., Tate W. P., Goddard G. V., and Abraham W. C. (1989) Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization.Neuroscience 28(3), 519–526.

    PubMed  CAS  Google Scholar 

  • Ouimet C. C., McGuinness T. L., and Greengard P. (1984) Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain.Proc. Natl. Acad. Sci. USA 81, 5604–5608.

    PubMed  CAS  Google Scholar 

  • Peters A., Palay S., and Webster H. (1991)The Fine Structure of the Nervous System, 3rd Edition, Oxford University Press, New York.

    Google Scholar 

  • Rao A. and Steward O. (1991) Evidence that protein constituents of postsynaptic membrane specializations are locally synthesized: Analysis of proteins synthesized within synaptosomes.J. Neurosci. 11, 2881–2895.

    PubMed  CAS  Google Scholar 

  • Robinson P. J. and Dunkley P. R. (1983) Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: factors determining the magnitude of the response.J. Neurochem. 41, 909–918.

    PubMed  CAS  Google Scholar 

  • Rostas J. A. P., Weinberger R., and Dunkley P. (1986) Multiple pools and multiple forms of calmodulin-stimulated protein kinase during development: Relationship to postsynaptic densities.Prog. Brain Res. 69, 355–371.

    PubMed  CAS  Google Scholar 

  • Sahyoun N., Levine H., Burgess S. K., Blanchard S., Chang K.-J., and Cuatrecasas P. (1985) Early postnatal development of calmodulin-dependent protein kinase II in rat brain.Biochem. Biophys. Res. Comm. 132 (3), 878–884.

    PubMed  CAS  Google Scholar 

  • Sahyoun N., Le Vine H., III, McDonald O. B., and Cuatrecasas P. (1986) Specific postsynaptic density proteins bind tubulin and calmodulin-dependent protein kinase type-II.J. Biol. Chem. 261, 12,339–12,344.

    CAS  Google Scholar 

  • Saitoh T. and Schwartz J. H. (1985) Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme inAplysia neurons.J. Cell Biol. 100, 835–842.

    PubMed  CAS  Google Scholar 

  • Scholz W. K., Baitinger C., Schulman H., and Kelly P. T. (1988) Developmental changes in Ca2+/calmodulin-dependent protein kinase II in cultures of hippocampal pyramidal neurons and astrocytes.J. Neurosci. 8, 1039–1051.

    PubMed  CAS  Google Scholar 

  • Schulman H. (1984) Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin-dependent protein kinase.J. Cell Biol. 99, 11–19.

    PubMed  CAS  Google Scholar 

  • Schulman H., Kuret J., Jefferson A. B., Nose P. S., and Spitzer K. H. (1985) Ca2+/calmodulin-dependent microtubule-associated protein II kinase: Broad substrate specificity and multifunctional potential in diverse tissues.Biochemistry 24, 5320–5327.

    PubMed  CAS  Google Scholar 

  • Schworer C. M., Colbran R. J., Keefer J. R., and Soderling T. R. (1988) Ca2+/calmodulin-dependent protein kinase II. Identification of a regulatory autophosphorylation site adjacent to the inhibitory and calmodulin-binding domains.J. Biol. Chem. 263, 13,486–13,489.

    CAS  Google Scholar 

  • Schworer C. M., Colbran R. J., and Soderling T. R. (1986) Reversible generation of a Ca2+/independent form of Ca2+/calmodulin-dependent protein kinase-II by an autophosphorylation mechanism.J. Biol. Chem. 261, 8581–8584.

    PubMed  CAS  Google Scholar 

  • Schworer C. M., McClure R. W., and Soderling T. R. (1985) Calmodulin-dependent protein kinases purified from rat brain and rabbit liver.Arch. Biochem. Biophys. 242, 137–145.

    PubMed  CAS  Google Scholar 

  • Sheng, M., Thompson M. A., and Greenberg M. E. (1991) CREB: a calcium-regulated transcription factor phosphorylated by calmodulin-dependent kinase.Science 252, 1427–1430.

    PubMed  CAS  Google Scholar 

  • Shenolikar S., Lickteig R., Hardie D. G., Soderling T. R., Hanley R. M., and Kelly P. T. (1986) Calmodulin-dependent multifunctional protein kinase: Evidence for isoenzyme forms in mammalian tissues.Eur. J. Biochem. 161, 739–747.

    PubMed  CAS  Google Scholar 

  • Stanton P. K. and Sarvey J. M. (1984) Blockade of longterm potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis.J. Neurosci. 4, 3080–3088.

    PubMed  CAS  Google Scholar 

  • Steward O. (1983a) Alterations in polyribosomes associated with dendritic spines during the reinnervation of the dentate gyrus of the adult rat.J. Neurosci. 3, 177–188.

    PubMed  CAS  Google Scholar 

  • Steward O. (1983b) Polyribosomes at the base of dendritic spines of CNS neurons—Their possible role in synapse construction and modification.Cold Spring Harbor Symp. Quant. Biol. 48, 745–759.

    PubMed  Google Scholar 

  • Steward O. (1987) Regulation of synaptogenesis through the local synthesis of protein at the post-synaptic site.Prog. Brain Res. 71, 267–279.

    PubMed  CAS  Google Scholar 

  • Steward O., Davis L., Doni C., Phillips L. L., Roa A., and Banker G. (1988) Protein synthesis and processing in cytoplasmic microdomains beneath postsynaptic sites on CNS neurons.Mol. Neurobiol. 2, 227–261.

    PubMed  CAS  Google Scholar 

  • Steward O. and Falk P. M. (1985) Polyribosomes under developing spine synapses: Growth specializations of dendrites at sites of synaptogenesis.J. Neurosci. Res. 13, 75–88.

    PubMed  CAS  Google Scholar 

  • Steward O. and Falk P. M. (1986) Protein-synthetic machinery at postsynaptic sites during synapto-genesis: A quantitative study of the association between polyribosomes and developing synapses.J. Neurosci. 6, 412–423.

    PubMed  CAS  Google Scholar 

  • Taft W. C., Tennes-Rees K. A., Blair R. E., Clifton G. L., and DeLorenzo R.J. (1988) Cerebral ischemia decreases endogenous calcium-dependent protein phosphorylation in gerbil brain.Brain Res. 447, 159–163.

    PubMed  CAS  Google Scholar 

  • Thiel G., Czernik A. J., Gorelick F., Nairn A. C., and Greengard P. (1988) Ca2+/calmodulin-dependent protein kinase II: Identification of theonine-286 as the autophosphorylation site in the alpha-subunit associated with the generation of Ca2+-independent activity.Proc. Natl. Acad. Sci. USA 85, 6337–6341.

    PubMed  CAS  Google Scholar 

  • Tiedge H., Fremeau R. T., Weinstock P. H., Arancio O., and Brosius J. (1991) Dendritic location of neural BC1 RNA.Proc. Natl. Acad. Sci. USA 88, 2093–2097.

    PubMed  CAS  Google Scholar 

  • Tucker R. P., Garner C. C., and Matus A. (1989)In situ localization of microtubule-associated protein mRNA in the developing and adult rat brain.Neuron 2, 1245–1256.

    PubMed  CAS  Google Scholar 

  • Waldmann R., Hanson P. I., and Schulman H. (1990) Multifunctional Ca2+/calmodulin-dependent protein kinase made Ca2+-independent for functional studies.Biochemistry 29, 1679–1684.

    PubMed  CAS  Google Scholar 

  • Wang K. T., Walaas S. I., Sihra T. S., Aderem A., and Greengard P. (1989) Phosphorylation and associated translocation of the 87-kDa protein, a major protein kinase C substrate, in isolated nerve terminals.Proc. Natl. Acad. Sci. USA 86, 2253–2256.

    PubMed  CAS  Google Scholar 

  • Wang L.-Y., Salter M., and MacDonald J. (1991) Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases.Science 253, 1132–1135.

    PubMed  CAS  Google Scholar 

  • Waxham M. N., Aronowski J., Westgate S. A., and Kelly P. T. (1990) Mutagenesis of Thr-286 in monomeric Ca2+/calmodulin-dependent protein kinase II eliminates Ca2+/calmodulin-independent activity.Proc. Natl. Acad. Sci. USA 87, 1273–1277.

    PubMed  CAS  Google Scholar 

  • Waxham M. N., Malenka R., Kelly P. T., and Mauk M. (1992) Extracellular application of peptide inhibitors of CaM-Kinase II attenuate synaptic transmission.Proc. Natl. Acad. Sci. USA, submitted.

  • Weinberger R. P. and Rostas J. A. P. (1988) Developmental changes in protein phosphorylation in chicken forebrain: I. cAMP stimulated phosphorylation.Dev. Brain Res. 43, 249–257.

    CAS  Google Scholar 

  • Williams J. H., Errington M. L., Lynch M. A., and Bliss T. V. P. (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus.Nature (Lond.) 341, 739–742.

    CAS  Google Scholar 

  • Willmund R., Mitschulat H., and Schneider K. (1986) Long-term modulation of Ca2+-stimulated autophosphorylation and subcellular distribution of the Ca2+-calmodulin-dependent protein kinase in the brain of Drosophila.Proc. Natl. Acad. Sci. USA 83, 9789–9793.

    PubMed  CAS  Google Scholar 

  • Yamauchi T., Ohsako S., and Deguchi T. (1989) Expression and characterization of calmodulin-dependent protein kinase II from cloned cDNAs in chinese hamster ovary cells.J. Biol. Chem. 264, 19,106–19,116.

    Google Scholar 

  • Yip R. K. and Kelly P. T. (1989)In situ phosphorylation in hippocampal tissue slices.J. Neurosci. 9, 3618–3630.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, P.T. Calmodulin-dependent protein kinase II. Mol Neurobiol 5, 153–177 (1991). https://doi.org/10.1007/BF02935544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935544

Keywords

Navigation