Skip to main content
Log in

Metabolic flux distribution for γ-linolenic acid synthetic pathways inSpirulina platensis

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Spirulina produces γ-linolenic acid (GLA), an important pharmaceutical substance, in a relatively low level compared with fungi and plants, prompting more research to improve its GLA yield. In this study, metabolic flux analysis was applied to determine the cellular metabolic flux distributions in the GLA synthetic pathways of twoSpirulina strains, wild type BP and a high-GLA producing mutant Z19/2. Simplified pathways involving the GLA synthesis ofS. platensis formulated comprise of photosynthesis, gluconeogenesis, the pentose phosphate pathway, the anaplerotic pathway, the tricarboxylic cycle, the GLA synthesis pathway, and the biomass synthesis pathway. A stoichiometric model reflecting these pathways contains 17 intermediates and 22 reactions. Three fluxes—the bicarbonate (C-source) uptake rate, the specific growth rate, and the GLA synthesis rate—were measured and the remaining fluxes were calculated using linear optimization. The calculation showed that the flux through the reaction converting acetyl-CoA into malonyl-CoA in the mutant strain was nearly three times higher than that in the wild-type strain. This finding implies that this reaction is rate controlling. This suggestion was supported by experiments, in which the stimulating factors for this reaction (NADPH and MgCl2) were added into the culture medium, resulting in an increased GLA-synthesis rate in the wild type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciferri, O., (1983)Spirulina, the edible microorganism.Microbiol. Rev. 47: 551–578.

    CAS  Google Scholar 

  2. Matsuno, T., S. Nagata, M. Iwahashi, T. Koike, and M. Okada (1979) Intensification of color of fancy red carp with zeaxanthin and myxoxanthophyll, major carotenoid constituents ofSpirulina.Bull. Jpn. Soc. Sci. Fisheries 45: 627–633.

    Article  CAS  Google Scholar 

  3. Vonshak, A. (1997) Use ofSpirulina biomass,Spirulina platensis (Arthrospira) physiology cell biology and biotechnology. Taylor & Francis Ltd., UK.

    Google Scholar 

  4. Cohen, Z. (1986)Product from Microalgae. CRC Press Inc., Florida, USA.

    Google Scholar 

  5. Nichols, B. W. and B. J. B. Wood (1968) The occurrence and biosynthesis of gamma-linolenic acid in blue-green alga,Spirulina platensis.Lipids 3: 46–50.

    Article  CAS  Google Scholar 

  6. Wright, S. and J. H. Burton (1982) A controlled trial of the treatment of atopic eczema in adults with evening primrose oil (Efamol).Lancet: 1120–1122.

  7. Horrobin, D. F. (1983) The role of essential fatty acids and prostaglandins in the premenstrual syndrome.J. Reprod. Med. 28: 465–468.

    CAS  Google Scholar 

  8. Huang, Y. S., M. S. Manku, and D. F. Horrobin (1984) The effect of dietary cholesterol on blood and liver polyunsaturated fatty acids and on plasma cholesterol in rats fed various types of fatty acid diet.Lipids 19: 664–672.

    Article  CAS  Google Scholar 

  9. Shimizu, S., Y. Shinmen, H. Kawahima, K. Akimoto, and H. Yamada (1988) Fungal mycelia as a novel source of eicosapentaenoic acid.Biochem. Biophys. Res. Comm. 150: 335.

    Article  CAS  Google Scholar 

  10. Wolf, R. B., R. Kleiman, and R. E. England (1983) New sources of γ-linolenic acid (Boraginaceae, Scrophulariaceae, Onagraceae, Saxifragaceae).J. Am. Oil. Chem. Soc. 60: 1858.

    Article  CAS  Google Scholar 

  11. Mahajan, G. and M. Kamat (1995) γ-Linolenic acid production fromSpirulina platensis.Appl. Microbiol. Biotechnol. 45: 466–469.

    Article  Google Scholar 

  12. Tanticharoen, M., M. Reungjitchachawali, B. Boonag, P. Vonktaveesuk, A. Vonshak, and Z. Cohen (1994) Optimization of γ-linolenic acid (GLA) production inSpirulina platensis.J. Appl. Phycol. 6: 295–300.

    Article  CAS  Google Scholar 

  13. Cohen, Z., A. Vonshak, and A. Richmond (1987) Fatty acid composition ofSpirulina strains grown under various environmental conditions.Phytochemistry 26: 2255–2258.

    Article  CAS  Google Scholar 

  14. Suphatrakul, A. (1996)Effect of Temperature on the Expression of the 12-Desaturase Gene (desA)in Spirulina platensisC1. M.S. Thesis, King Mongkut’s University of Technology, Thonburi, Bangkok, Thailand.

    Google Scholar 

  15. Deshnium, P., K. Paithoonrangsarid, A. Suphatrakul, D. Meesapyodsuk, M. Tanticharoen, and S. Cheevadhanarak (2000) Temperature-independent and-dependent expression of desaturase genes in filamentous cyanobacteriumSpirulina platensis strain C1 (Arthrospira sp. PCC 9438).FEMS Lett. 184: 207–213.

    Article  CAS  Google Scholar 

  16. Cohen, Z., M. Reungjitchachawali, W. Siangdung, M. Tanticharoen, and Y. M. Heimer (1993) Herbicide resistant lines of microalgae: Growth and fatty acid composition.Phytochemistry 34: 973–978.

    Article  CAS  Google Scholar 

  17. Berry, A. (1996) Improving production of aromatic compounds inEscherichia coli by metabolic engineering.Trends Biotechnol. 14: 250–256.

    Article  CAS  Google Scholar 

  18. Gourdon, P. and N. D. Lindley (1999) Metabolic analysis of glutamate production byCorynebacterium glutamicum.Met. Eng. 1: 224–231.

    Article  CAS  Google Scholar 

  19. Hua, Q., P.-C. Fu, C. Yang, and K. Shimizu (1998) Microaerobic lysine fermentations and metabolic flux analysis.Biochem. Eng. J. 2: 89–100.

    Article  CAS  Google Scholar 

  20. Ingram, L. O., P. F. Gomez, X. Lai, M. Moniruzzaman, B. E. Wood, L. P. Yomano, and S. W. York (1998) Metabolic engineering of bacteria for ethanol production.Biotechnol. Bioeng. 58: 204–214.

    Article  CAS  Google Scholar 

  21. Vallino, J. J. and G. Stephanopoulos (1993) Metabolic flux distributions inCorynebacterium glutamicum during growth and lysine overproduction.Biotechnol. Bioeng. 41: 633–646.

    Article  CAS  Google Scholar 

  22. Vonshak, A. (1986)Laboratory Techniques for the Cultivation of Microalgae: CRC Handbook of Microalgal Mass Cultures. CRC Press, Florida, USA.

    Google Scholar 

  23. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugar and related substances.Analy. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  24. Allen, I. F. and N. G. Homes (1986)Electron Transport and Redox Titration: Photosynthesis Energy Transfuction. a Practical Approach. Information Printing Ltd., Oxford, UK.

    Google Scholar 

  25. Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asumizu, Y. Nakamura, N. Miyajima, and M. Hirosawa (1996) Sequence analysis of the genome of the unicellular cyanobacteriumSynechocystis sp. strain PCC 6803. II Sequence determination of the entire genome and assigment of potential protein-coding regions.DNA Res. 3: 109–136.

    Article  CAS  Google Scholar 

  26. Kaneko, T., S. Sato, H. Kotani, A. Tanak, E. Asumizu, Y. Nakamura, Miyajima, and M. Hirosawa (1996) Sequence analysis of the genome of the unicellular cyanobacteriumSynechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assigment of potential protein-coding regions (supplement).DNA Res. 3: 185–209.

    Article  CAS  Google Scholar 

  27. Hua, Q. and K. Shimizu (1999) Effect of dissoved ozygen concentration on the intracellular flux distribution for pyruvate fermentation.J. Biotechnol. 68: 135–147.

    Article  CAS  Google Scholar 

  28. Daae, B. E. and A. P. Ison (1999) Classification and sensitivity analysis of a proposed primary metabolic reaction network forStreptomyces lividans.Met. Eng. 1: 153–165.

    Article  CAS  Google Scholar 

  29. Stephanopoulos, G., A. A. Aristidou, and J. Nielsen (1998)Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, USA.

    Google Scholar 

  30. Yang, C., Q. Hua, and K. Shimizu (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions.Biochem. Eng. J. 6: 87–102.

    Article  CAS  Google Scholar 

  31. Laing, W. A. (1992) The regulation of acetyl-CoA carboxylase.Res. Photosyn. 3: 39–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asawin Meechai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meechai, A., Pongakarakun, S., Deshnium, P. et al. Metabolic flux distribution for γ-linolenic acid synthetic pathways inSpirulina platensis . Biotechnol. Bioprocess Eng. 9, 506–513 (2004). https://doi.org/10.1007/BF02933494

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933494

Keywords

Navigation