Skip to main content
Log in

Cloning and sequencing of a novel glutaryl acylase β-subunit gene ofPseudomonas cepacia BY21 from bioinformatics

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Pseudomonas cepacia BY21 was found to produce glutaryl acylase that is capable of deacylating glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) to 7-aminocephalosporanic acid (7-ACA), which is a starting material for semi-synthetic cephalosporin antibiotics. Amino acids of the reported glutaryl acylases from variousPseudomonas sp. strains show a high similarity (>93% identity). Thus, with the known nucleotide sequences ofPseudomonas glutaryl acylases in GenBank, PCR primers were designed to clone a glutaryl acylase gene fromP. cepacia BY21. The unknown β-subunit gene of glutaryl acylase from chromosomal DNA ofP. cepacia BY21 was cloned successfully by PCR. The β-subunit amino acids ofP. cepacia BY21 acylase (GenBank accession number AY948547) were similar to those ofPseudomonas diminuta KAC-1 acylase except that Asn408 ofP. diminuta KAC-1 acylase was changed to Leu408.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khang, Y.-H., I.-W. Kim, Y.-R. Hah, J.-H. Hwangbo, and K.-K. Kang (2003) Fusion protein ofVitreoscilla hemoglobin with D-amino acid oxidase enhances activity and stability of biocatalyst in the bioconversion process of cephalosporin C.Biotechnol. Bioeng. 82: 480–488.

    Article  CAS  Google Scholar 

  2. Franzosi, G., E. Battistel, I. Gagliardi, W. van der Goes (1995) Screening and characterization of microorganisms with glutaryl-7ADCA acylase activity.Appl. Microbiol. Biotechnol. 43: 508–513.

    Article  CAS  Google Scholar 

  3. Khang, Y.-H. and B.-H. Yoo (2000) Isolation and characterization of a novel soil strain,Pseudomonas cepacia BY21, with glutaryl-7-aminocephalosporanic acid acylase activity.Biotechnol. Lett. 22: 317–320.

    Article  CAS  Google Scholar 

  4. Aramori, I., M. Fukagawa, M. Tsumura, M. Iwami, H. Ono, H. Kojo, M. Kohsaka, Y. Ueda, and H. Imanaka (1991) Cloning and nucleotide sequencing of a novel 7β-(4-carboxybutanamido) cephalosporanic acid acylase gene ofBacillus laterosporus and its expression inEscherichia coli andBacillus subtilis.J. Bacteriol. 173: 7848–7855.

    CAS  Google Scholar 

  5. Lee, Y. H., T. S. Chang, H. J. Liu, and W. S. Chu (1998) An acidic glutaryl-7-aminocephalosporanic acid acylase fromPseudomonas nitroreducens.Biotechnol. Appl. Biochem. 28: 113–118.

    CAS  Google Scholar 

  6. Lee, Y. S., H. W. Kim, K. B. Lee, and S. S. Park (2000) Involvement of arginine and tryptophan residues in catalytic activity of glutaryl 7-aminocephalosporanic acid acylase fromPseudomonas sp. strain GK16.Biochim. Biophys. Acta 1523: 123–127.

    CAS  Google Scholar 

  7. Li, Y., J. Chen, W. Jiang, X. Mao, G. Zhao, and E. Wang (1999)In vivo post-translational processing and subunit reconstitution of cephalosporin acylase fromPseudomonas sp. 130.Eur. J. Biochem. 262: 713–719.

    Article  CAS  Google Scholar 

  8. Luo, H., Q. Li, H. Yu, and Z. Shen (2004) Construction and application of fusion proteins of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase for direct bioconversion of cephalosporin C to 7-aminocephalosporanic acid.Biotechnol. Lett. 26: 939–945.

    Article  CAS  Google Scholar 

  9. Tritz-Wolf, K., K. P. Koller, G. Lange, A. Liesum, K. Sauber, H. Schreuder, W. Aretz, and W. Kabsch (2002) Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C.Protein Sci. 11: 92–103.

    Article  Google Scholar 

  10. Mao, X., W. Wang, W. Jiang, and G. P. Zhao (2004) His23beta and Glu455beta of thePseudomonas sp. 130 glutaryl-7-aminocephalosporanic acid acylase are crucially important for efficient autoproteolysis and enzymatic catalysis.Protein J. 23: 197–204.

    Article  CAS  Google Scholar 

  11. Otten, L. G., C. F. Sio, J. Vrielink, R. H. Cool, and W. J. Quax (2002) Altering the substrate specificity of cephalosporin acylase by directed evolution of the Beta-subunit.J. Biol. Chem. 277: 42121–42127.

    Article  CAS  Google Scholar 

  12. Otten, L. G., C. F. Sio, A. M. van der Sloot, R. H. Cool, and W. J. Quax (2004) Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase.Chembiochem 5: 820–825.

    Article  CAS  Google Scholar 

  13. Sio, C. F., A. M. Riemens, J. van der Laan, R. M. D. Verhaert, and W. J. Quax (2002) Directed evolution of a glutaryl acylase into an adipyl acylase.Eur. J. Biochem. 269: 4495–4504.

    Article  CAS  Google Scholar 

  14. Lee, Y. S. and S. S. Park (1998) Two-step autocatalytic processing of the glutaryl 7-aminocephalosporanic acid acylase fromPseudomonas sp. strain GK16.J. Bacteriol. 180: 4576–4582.

    CAS  Google Scholar 

  15. Kim, J. K., I. S. Yang, S. Rhee, Z. Dauter, Y. S. Lee, S. S. Park, and K. H. Kim (2003) Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation.Biochemistry 42: 4084–4093.

    Article  CAS  Google Scholar 

  16. Kim, Y., K.-H. Yoon, Y.-H. Khang, S. Turley, and W. G. Hol (2000) The 2.0 Å crystal structure of cephalosporin acylase.Structure 8: 1059–1068.

    Article  CAS  Google Scholar 

  17. Shewale, J. G., K. K. Kumar, and G. R. Ambekar (1987) Evaluation of determination of 6-aminopenicillanic acid byp-dimethylaminobenzaldehyde.Biotechnol. Tech. 1: 69–72.

    Article  CAS  Google Scholar 

  18. Oh, B., M. Kim, J. Yoon, K. Chung, Y. Shin, D. Lee, and Y. Kim (2003) Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the sidechain conformations of active-site residues.Biochem. Biophys. Res. Commun. 310: 19–27.

    Article  CAS  Google Scholar 

  19. Kim, J. H., J. S. Lim, and S. W. Kim (2004) The improvement of cephalosporin C production by fed-batch cluture ofCephalosporium acremonium 25 using rice oil.Biotechnol. Bioprocess Eng. 9: 459–464.

    Article  CAS  Google Scholar 

  20. Gal, S. W., S. W. Lee, and Y. J. Choi (2002) Molecular cloning and characterization of 58 kDa chitinase gene fromSerratia marcescens KCTC 2172.Biotechnol. Bioprocess Eng. 7: 38–42.

    Article  CAS  Google Scholar 

  21. Kim, O.-T., M.-Y. Kim, S.-J. Hwang, J.-C. Ahn, and B. Hwang (2005) Cloning and molecular analysis of cDNA encoding cycloartenol synthase fromCentella asiatica (L.) urban.Biotechnol. Bioprocess Eng. 10: 16–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ho Khang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, YS., Yoo, HJ., Kim, SD. et al. Cloning and sequencing of a novel glutaryl acylase β-subunit gene ofPseudomonas cepacia BY21 from bioinformatics. Biotechnol. Bioprocess Eng. 10, 510–515 (2005). https://doi.org/10.1007/BF02932286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932286

Keywords

Navigation