Skip to main content
Log in

Effects of hydrocarbon additions on gas-liquid mass transfer coefficients in biphasic bioreactors

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effects of aliphatic hydrocarbons (n-hexadecane andn-dodecane) on the volumetric oxygen mass transfer coefficient (k L a) were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2 vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliablek L a measurements. Addition of 1% (v/v)n-hexadecane orn-dodecane increased thek l a 1.55-and 1.33-fold, respectively, compared to the control (superficial velocity: 25.8×10−3 m/s, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial areaa and the liquid film mass transfer coefficientk L suggests that the observedk L a increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v)n-hexadecane orn-dodecane to analogous setups using CSTRs led to ak L a increase by a factor of 1.68 and 1.36, respectively (superficial velocity: 2.1×10−3 m/s, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

specific interfacial area (1/m)

C * :

oxygen saturation concentration of the aqueous phase (g/L)

C :

dissolved oxygen concentration of the aqueous phase (g/L)

d 32 :

Sauter mean bubble diameter (m)

d eqi :

diameter of the volume-equivalent sphere (m)

D :

impeller diameter (m)

E :

bubble major axis in two-dimensional projection (m)

e :

bubble minor axis in two-dimensional projection (m)

k L :

liquid film mass transfer coefficient (m/h)

(k l)v :

k L in the presence of an oxygen-vector (organic phase) (m/h)

(k L)w :

k L in the absence of an oxygen-vector (aqueous phase) (m/h)

k L a :

volumetric mass transfer coefficient (1/h)

(k L a)v :

k L a in the presence of an oxygen-vector (organic phase) (1/h)

(k L a)w :

k L a in the absence of an oxygen-vector (aqueous phase) (1/h)

N :

impeller speed (1/s)

P :

power (W)

t :

time (h)

V :

liquid volume (m3)

δ:

sparger orifice diameter (mm)

ε:

gas hold up (dimensionless)

Vs :

superficial gas velocity (m/s)

References

  1. Ju, L.-K. and C. S. Ho (1989) Oxygen diffusion coefficient and solubility inn-hexadecane.Biotechnol. Bioeng. 34: 1221–1224.

    Article  CAS  Google Scholar 

  2. Märl, H. and R. Bronnenmeier (1985) Mechanical stress and microbial production. pp. 369–392. In: H.-J. Rehm and G. Reed (eds.):Biotechnology. VCH, Weinheim, Germany.

    Google Scholar 

  3. Déziel, E., Y. Comeau, and R. Villemur (1999) Two-liquidphase bioreactors for enhanced degradation of hydrophobic/toxic compounds.Biodegradation 10: 219–233.

    Article  Google Scholar 

  4. Malinowski, J. J. (2001) Two-phase partitioning bioreactors in fermentation technology.Biotechnol. Adv. 19: 525–538.

    Article  CAS  Google Scholar 

  5. Ho, C. S., L.-K. Ju, and R. F. Baddour (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition ofn-hexadecane.Biotechnol. Bioeng. 36: 1110–1118.

    Article  CAS  Google Scholar 

  6. Jia, S., M. Wang, P. Kahar, Y. Park, and M. Okabe (1997) Enhancement of yeast fermentation by addition of oxygen vectors in air-lift bioreactor.J. Ferment. Bioeng. 84: 176–178.

    Article  CAS  Google Scholar 

  7. Menge, M., J. Mukherjee, and T. Scheper (2001) Application of oxygen vectors toClaviceps purpurea cultivation.Appl. Microbiol. Biotechnol. 55: 411–416.

    Article  CAS  Google Scholar 

  8. Wei, D. Z. and H. Liu (1998) Promotion of L-asparaginase production by usingn-dodecane.Biotechnol. Tech. 12: 129–131.

    Article  CAS  Google Scholar 

  9. Giridhar, R. and A. K. Srivastava (2000) Productivity enhancement in 1-sorbose fermentation using oxygen vector.Enzyme Microb. Technol. 27: 537–541.

    Article  CAS  Google Scholar 

  10. Jialong, W. (2000) Enhancement of citric acid production byAspergillus niger usingn-dodecane as an oxygen vector.Process Biochem. 35: 1079–1083.

    Article  Google Scholar 

  11. Lai, L. S., T. H. Tsai, and T. C. Wang (2002) Application of oxygen vectors toAspergillus terreus cultivation.J. Biosci. Bioeng. 94: 453–459.

    CAS  Google Scholar 

  12. Galaction, A. I., D. Cascaval, M. Turnea, and E. Folescu (2005) Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 2.Propionobacterium shermanii broths.Bioprocess Biosyst. Eng. 27: 263–271.

    Article  CAS  Google Scholar 

  13. MacLean, G. (1977) Oxygen diffusion rates in organic fermentation broths.Process Biochem. 12: 22–28.

    CAS  Google Scholar 

  14. Lowe, K. C., M. R. Davey, and J. B. Power (1998) Perfluorochemicals: their applications and benefits to cell culture.Trends Biotechnol. 16: 272–277.

    Article  CAS  Google Scholar 

  15. Zhao, S., S. Kuttuva, and L. Lu (1999) Oxygen transfer characteristics of multi-phase dispersions simulating water-in-oil xanthan fermentations.Bioprocess Eng. 20: 313–323.

    Article  CAS  Google Scholar 

  16. Rols, J. L., J. S. Condoret, C. Fonade, and G. Goma (1990) Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors.Biotechnol. Bioeng. 35: 427–435.

    Article  CAS  Google Scholar 

  17. Alves, S. S., C. I. Maia, and J. M. T. Vasconcelos (2004) Gas-liquid mass transfer coefficient in stirred tanks interpreted through bubble contamination kinetics.Chem. Eng. Process. 43: 823–830.

    Article  CAS  Google Scholar 

  18. Özbek, B. and S. Gayik (2001) The studies on the oxygen mass transfer coefficient in a bioreactor.Process Biochem. 36: 729–741.

    Article  Google Scholar 

  19. Linek, V., P. Benes, J. Sinkule, and T. Moucha (1993) Non-ideal pressure step method fork L a measurement.Chem. Eng. Sci. 48: 1593–1599.

    Article  CAS  Google Scholar 

  20. Moucha, T. V., V. Linek, E. Prokopová (2005) Gas holdup, mixing time, and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade, and techmix impeller and their combinations.Chem. Eng. Sci. 58: 1839–1846.

    Article  Google Scholar 

  21. Silva, T. L., A. Mendes, R. L. Mendes, V. Calado, S. S. Alves, J. M. T. Vasconcelos, and A. Reis (2006) Effect ofn-dodecane onCrypthecodinium cohnii fermentations and DHA production.J. Ind. Microbiol. Biotechnol. 33: 408–416.

    Article  Google Scholar 

  22. Galaction, A. I., D. Cascaval, C. Oniscu, and M. Turnea (2004) Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 1. Simulated fermentation broths.Bioprocess Biosyst. Eng. 26: 231–238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Reis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, T.L., Calado, V., Silva, N. et al. Effects of hydrocarbon additions on gas-liquid mass transfer coefficients in biphasic bioreactors. Biotechnol. Bioprocess Eng. 11, 245–250 (2006). https://doi.org/10.1007/BF02932038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932038

Keywords

Navigation