Skip to main content
Log in

Calculation of light penetration depth in photobioreactors

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Light penetration depth in high-densityChlorella cultures can be successfully estimated by Beer-Lambert's law. The efficiency of light energy absorption by algal cultures was so high that algal cells near the illuminating surface shade the cells deep in the culture. To exploit the potential of high-density algal cultures, this mutual shading should be eliminated or minimized. However, providing more light energy will not ease the situation and it will simply drop the overall light utilization efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabinowitch, E. (1961) Spectral efficiency of photosynthesis, p. 274–298. In: Campbell, P. A. (ed.),Medical and Biological Aspects of the Energies of Space. Columbia University Press. New York, NY.

    Google Scholar 

  2. Krauss, R. W. and A. Osretkar (1961)Minimum and maximum tolerances of algae to temperature and light intensity. Columbia University Press. New York, NY.

    Google Scholar 

  3. Thacker, D. R. and H. Babcock (1957) The mass culture of algae.J. Sol. Energy Science. Eng. 1: 37–49.

    Google Scholar 

  4. Kyle, D. J., C. B. Osmond, and C. J. Arntzen (1987)Photoinhibition. Elsevier. Amsterdam, Netherlands.

    Google Scholar 

  5. Lee, C.-G. and B. O. Palsson (1994) High-density algal photobioreactors using light-emitting diodes.Biotechnol. Bioeng. 44: 1161–1167.

    Article  CAS  Google Scholar 

  6. Vonshak, A. (1986) Laboratory techniques for the cultivation of microalgae, p. 117–145. In: Richmond, A. (ed),Handbook of Microalgal Mass Culture, CRC Press. Boca Raton, FL, USA.

    Google Scholar 

  7. Lee, C.-G. and B. O. Palsson (1996) Photoacclimation ofChlorella vulgaris to red light from light-emitting diodes leads to autospore release following each cellular division.Bioechnol. Prog. 12: 249–256.

    Article  CAS  Google Scholar 

  8. Emerson, R. and C. M. Lewis (1943) The dependence of quantum yield ofChlorella photosynthesis on wave length of light.Amer. J. Bot. 30: 165–178.

    Article  CAS  Google Scholar 

  9. Kok, B. (1960) Efficiency of photosynthesis., p. 566–633. In: Ruhland, W. (ed.),Encyclopedia of Plant Physiology, Springer, Berlin, Germany.

    Google Scholar 

  10. Myers, J. (1980) On the algae: thoughts about physiology and measurements of efficiency., p. 1–16. In: Falkowski, P. G. (ed.),Primary Productivity in the Sea. Plenum Press, New York, NY.

    Google Scholar 

  11. Pirt, S. J., Y.-K. Lee, A. Richmond, and M. W. Pirt (1980) The photosynthetic efficiency ofChlorella biomass growth with reference to solar energy utilization.J. Chem. Tech. Biotechnol. 30: 25–34.

    CAS  Google Scholar 

  12. Richmond, A. (1986) Outdoor mass cultures of microalgae, p. 285–330. In: Richmond, A. (ed.)Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, FL.

    Google Scholar 

  13. Van de Hulst, H. C. (1957)Light scattering by small particles, John Wiley, New York, NY

    Google Scholar 

  14. Aiba, S. (1982) Growth kinetics of photosynthetic microorganisms, p. 85–156. In: Fiechter A. (ed.)Adv. Biochem. Eng., Vol. 23, Microbial Reactions. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  15. Cornet, J. F., C. G. Dussap, and G. Dubertret (1992) A structured model for simulation of cultures of the cyanobacteriumSpirulina platensis in photobioreactors: I. Coupling between light transfer and growth kinetics.Biotechnol. Bioeng. 38: 817–882.

    Article  Google Scholar 

  16. Cornet, J. F., C. G. Dussap, P. Cluzel, and G. Dubertret (1992) A structured model for simulation of cultures of the cyanobacteriumSpirulina platensis in photobioreactors: II. Identification of kinetic parameters under light and mineral limitations.Biotechnol. Bioeng. 38: 826–834.

    Article  Google Scholar 

  17. Frohlich, B. T., I. A. Webster, M. M. Ataai, and M. L. Shuler (1983) Photobioreactors: models for interaction of light intensity, reactor design, and algal physiology.Biotechnol. Bioeng. Symp. 13: 331–350.

    CAS  Google Scholar 

  18. Geider, R. J. and B. A. Osborne (1992) Light utilization and optical properties of algae, p. 122–155. In: Geider, R. J. and M. Melkonian (eds.), Current Physiology,Algal Photosynthesis. Chapman and Hal. New York, NY.

    Google Scholar 

  19. Morel, A. and A. Bricaud (1981) Theoretical results concerning light absorption in a discrete nedium, and application to specific absorption of phytoplankton.Deep-Sea Research 28A: 1375–1393.

    Article  Google Scholar 

  20. Geider R. J. and B. A. Osborne (1987) Light absorption by a marine diatom: experimental observation and theoretical calculations of the package effect in a smallThalassiosira species.Mar. Biol. 96: 299–308.

    Article  Google Scholar 

  21. Duysens, L. N. M. (1956) The flattening of the absorption spectrum of suspensions, as compared to that of solutions.Biochem. Biophys. Acta 19: 1–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CG. Calculation of light penetration depth in photobioreactors. Biotechnol. Bioprocess Eng. 4, 78–81 (1999). https://doi.org/10.1007/BF02931920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931920

Key words

Navigation