Skip to main content
Log in

Genetic relationships among some new cat populations sampled in Europe: A spatial autocorrelation analysis

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The allelic frequencies of nine Mendelizing genetic characteristics that control coat colour, tabby and length and some skeletal abnormalities have been studied in four feral domestic cat populations, two in the north of Catalonia (Girona and Roses & L’Estartit, northeastern Spain) and two Adriatic Italian populations (Rimini and Venice). Using different genetic and multivariate analyses (Nei’s and Cavalli-Sforza and Edwards’s genetic distances, phenograms and cladograms using different algorithms, strict consensus trees, canonical population, principal coordinates and nonmetric multidimensional scaling analyses), I show the genetic relationships between these populations and other Western European cat populations previously studied. In the Western European area comprising Catalonia, Italy, France and Great Britain, I found significant spatial structure for thet b, l andW alleles and for the average correlogram for the seven alleles studied as a whole using a spatial autocorrelation analysis. The genetic distance matrices between these European cat populations also showed a significant correlation with the geographical distance between these populations using Mantel’s test. These analyses showed that in each of these countries, local cat populations have characteristic genetic profiles which were different to neighbouring populations in nearby countries. At least in this area of Western Europe, the geographical distances between cat populations (although the gene flow can be relatively high) is an important factor which can explain differences in allele frequencies between these populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf F. W. and Phelps S. R. 1981 Use of allelic frequencies to describe population structure.Can. J. Fish. Aquat.Sci. 38: 1507–1514

    Article  Google Scholar 

  • Barbujani G. 1987 Autocorrelation of gene frequencies under isolation by distance.Genetics 117: 777–782

    PubMed  CAS  Google Scholar 

  • Barrowclough G. F. 1983 Biochemical studies of microevolutionary processes. InPerspectives in ornithology (eds.) B. Brush and A. Clark (Cambridge: Cambridge University Press)

    Google Scholar 

  • Blumenberg B. and Lloyd A. T. 1980 Mutant allele frequencies in the domestic cat: a preliminary discussion of selection with particular reference to the United Kingdom and Eire.Genetica 54: 17–28

    Article  Google Scholar 

  • Cavalli-Sforza L. L. and Edwards A. W. F. 1967 Phylogenetic analysis: models and estimation procedures.Evolution 21: 550–510

    Article  Google Scholar 

  • Chesser R. K. 1983 Genetic variability within and among populations of the black-tailed prairie dog.Evolution 37: 320–331

    Article  Google Scholar 

  • Clark J. M. 1975 The effects of selection and human preference on coat colour gene frequencies in urban cats.Heredity 35: 195–210

    Article  PubMed  CAS  Google Scholar 

  • Clark J. M. 1976 Variations in coat colour gene frequencies and selection in cats of Scotland.Genetica 46: 401–412

    Article  Google Scholar 

  • Committee on Standardized Genetic Nomenclature for Cat 1968 Standardized genetic nomenclature for the domestic cat.J. Hered. 59: 39–40

    Google Scholar 

  • Cramer D. V., Chakravarti A., Arenas O., Humprieres J. and Mowery P. A. 1988 Genetic diversity within and between natural populations ofRattus norvegicus.J. Hered. 79: 319–324

    PubMed  CAS  Google Scholar 

  • Crow J. F. and Aoki K. 1984 Group selection for a polygenic behavioural triat: Estimating the degree of population subdivision.Proc. Natl. Acad. Sci. USA 81: 6073–6077

    Article  PubMed  CAS  Google Scholar 

  • Cuadras C. M. 1991Métodos de Análisis Multivariante (Barcelona: Promociones y Publicaciones Universitarias)

    Google Scholar 

  • Dreux P. 1967 Gene frequencies in the cat populations of Paris.J. Hered. 58: 89–92

    PubMed  CAS  Google Scholar 

  • Dreux P. 1971 Genetique des populations des chats domestiques dans la vallee de Chamonix (Haute-Savoie).Ann. Genet. Sel. Anim. 3: 145–151

    Article  Google Scholar 

  • Dreux P. 1975 Genetique de population des chats domestique de Marseille (Bouche-du-Rhone, France).Ann. Genet. Sel. Anim. 7: 23–33

    Article  Google Scholar 

  • Dreux P. 1979 Frequences de genes a effets visible dans les populations de chats de la ville de Tours (Indre et Loire, France).Ann. Genet. Sel. Anim. 11: 391–396

    Article  Google Scholar 

  • Dreux P. 1981 Genetique des populations de chat domestique dans un district rural du Cher (France).Ann. Genet. Sel. Anim. 13: 363–370

    Article  Google Scholar 

  • Dreux P. 1986 Genetique des populations de chats domestiques dans un district de Bretagne (Carnac, Morbihan, France).Coll. Nat. CNRS. Biol. Popul. 6: 312–316

    Google Scholar 

  • Dreux P. and Saumet D. 1981 Frequences des genes dans populations rurales Espagnoles de chats domestiques.Carniv. Genet. newsl. 4: 127–129

    Google Scholar 

  • Durbin J. and Watson G. S. 1950 Testing for serial correlation in least squares regression. I.Biometrika 37: 409–428

    PubMed  CAS  Google Scholar 

  • Farris J. S. 1972 Estimating phylogenetic trees from distance matrices.Am. Nat. 106: 645–668

    Article  Google Scholar 

  • Fitch W. M. and Margoliash E. 1967 Construction of phylogenetic trees.Science 155: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Genermont J. 1978 Gene frequencies in the cat population of Nice.Carniv. Genet. Newsl. 3: 356–357

    Google Scholar 

  • Gower J. C. 1966 Some distance properties of latent root and vector methods used in multivariate analysis.Biometrika 53: 325–338

    Google Scholar 

  • Gower J. C. and Ross G. J. S. 1969 Minimum spanning trees and single cluster analysis.Appl. Stat. 18:54–64

    Article  Google Scholar 

  • Gruffydd-Jones T., Jaffe P., Lloyd A. T., Todd N. B. and Blumenberg B. 1979 Mutant allele frequencies in domestic cat populations of Bristol and South Wales.Carniv. Genet. Newsl. 4:13–17

    Google Scholar 

  • Kajon A., Centron D. and Ruiz-Garcia M. 1992 Gene frequencies in the cat population of Buenos Aires, Argentina, and the possible origin of this population.J. Hered. 83: 148–152

    PubMed  CAS  Google Scholar 

  • Klein K. K. 1993 Population genetics and gene geography. InGenetikii koshkii (eds.) A. Ruvinski and P. M. Borodin (Moscow: Russian Acadamy of Science) (in Russian)

    Google Scholar 

  • Kruskal J. B. 1964 Nonmetric multidimensional scaling: a numerical method.Psychometrika 29: 28–42

    Google Scholar 

  • Lloyd A. T. 1979 The population genetics of cats in northwest Ireland.Carniv. Genet. Newsl. 3: 373–377

    Google Scholar 

  • Lloyd A. T. and Todd N. B. 1989Domestic cat gene frequencies. A catalogue and bibliography (Newcastle upon Tyne: Tetrahedron Publications)

    Google Scholar 

  • Lloyd A. T., Todd N. B., Dyte C. E., Blumenberg B. and Adalsteinsson S. 1983 Towards a comprehensive picture of the Mediterranean: population genetics of the cats of Rome, Italy.Carniv. Genet. newsl. 4: 235–241

    Google Scholar 

  • Mantel N. A. 1967 The detection of disease clustering and a generalized regression approach.Cancer Res. 27: 209–220

    PubMed  CAS  Google Scholar 

  • Margush T. and McMorris F. R. 1981 Consensus n-trees.Bull. Math. Biol. 43: 239–244

    Google Scholar 

  • Mathews N. E. and Porter W. F. 1993 Effect of social structure on genetic structure of free-ranging white-tailed deer in the Adirondack mountains.J. Mammal. 74: 33–43

    Article  Google Scholar 

  • Mickevich M. F. 1980 Taxonomic congruence: Rohlf and Sokal’s misunderstanding.Syst. Zool. 29: 162–176

    Article  Google Scholar 

  • Moran P. A. P. 1950 Notes on continuous stochastic phenomena.Biometrika 37: 17–23

    PubMed  CAS  Google Scholar 

  • Navajas-Navarro M. and Britton-Davidian J. 1989 Genetic structure of insular Mediterranean populations of the house mouse.Biol. J. Linn. Soc. 36: 377–390

    Article  Google Scholar 

  • Nei M. 1972 Genetic distance between populations.Am. Nat. 106: 283–292

    Article  Google Scholar 

  • Nei M. 1978 Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics 89: 583–590

    PubMed  Google Scholar 

  • Nei M., Tajima F. and Tateno Y. 1983 Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data.J. Mol. Evol. 19: 153–170

    Article  PubMed  CAS  Google Scholar 

  • Oden N. 1984 Assessing the significance of a spatial correlogram.Geogr. Anal. 16: 1–16

    Google Scholar 

  • Prager E. M. and Wilson A. C. 1976 Congruency of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of cracid birds.J. Mol. Evol. 9: 45–57

    Article  PubMed  CAS  Google Scholar 

  • Preleuthner M. and Pinsker W. 1993 Depauperated gene pools inMarmota m. marmota are caused by an ancient bottleneck: electrophoretic analysis of wild populations from Austria and Switzerland.Acta Theriol. 38, Suppl. 2: 121–139

    Google Scholar 

  • Rao C. R. 1951Advanced statistical methods in biometric research (Darien, USA: Hafner Publishing Company)

    Google Scholar 

  • Robinson R. 1971 On gene frequencies in cats of Benidorm, Spain.Carniv. Genet. Newsl. 2: 32–33

    Google Scholar 

  • Robinson R. 1972 Mutant allele frequencies in the cats of Cyprus.Theor. Appl. Genet. 42: 293–296

    Article  Google Scholar 

  • Robinson R. 1977Genetics for cat breeders, 2nd edn (Oxford: Oxford University Press)

    Google Scholar 

  • Robinson R. 1987 Mutant gene frequencies in cats of the Greater London area.Theor. Appl. Genet. 74: 579–583

    Article  Google Scholar 

  • Robinson R. and Manchenko G. P. 1981 Cat gene frequencies of the U.S.S.R.Genetica 55: 41–46

    Article  Google Scholar 

  • Robinson R. and Silson M. 1969 Mutant allele frequencies in cats of Southern England.Theor. Appl. Genet. 39: 326–329

    Article  Google Scholar 

  • Rohlf F. J., Rohlf F. J. 1970 Adaptive hierarchical clustering schemes.Syst. Zool. 19: 58–82

    Article  Google Scholar 

  • Rohlf F. J., Rohlf F. J. 1982 Consensus indices for comparing classifications.Math. Biosci. 59: 131–144

    Article  Google Scholar 

  • Ruiz-Garcia M. 1988 Frecuencias alélicas mutantes en una población de gatos domésticos urbanos (Barcelona) y en una población de gatos rurales (Castelldefels rural) en Cataluña, España.Genética Ihérica 40: 157–187

    Google Scholar 

  • Ruiz-Garcia M. 1989 The urban effect in two Spanish domestic cat populations.C. Gene. J. 6: 1–26

    Google Scholar 

  • Ruiz-Garcia M. 1990a Mutant allele frequencies in domestic cat populations in Catalonia, Spain, and their genetic relationships with Spanish and English colonial cat populations.Genetica 82: 209–214

    Article  Google Scholar 

  • Ruiz-Garcia M. 1990b Mutant allele frequencies in domestic cat populations on the Spanish Mediterranean coast, and their genetic distances from other European and North African cat populations.Genetica 82: 215–221

    Article  Google Scholar 

  • Ruiz-Garcia M. 1990c Frequencias alélicas en la población de gatos de Palma de Mallorca e Ibiza y relaciones genéticas con otras poblaciones de gatos Europeos y Norteafricanos.Evol. Biol. 4: 189–216

    Google Scholar 

  • Ruiz-Garcia M. 1990d Frecuencias alelicas en la población de gatos domésticos de la isla de Menorca (Baleares): Diferentes modelos de evolutión colonizadora.Evol. Biol. 4: 307–342

    Google Scholar 

  • Ruiz-Garcia M. 1991 Más sobre la genetica de poblaciones deFelis catus en la costa Mediterránea Española: Un análisis de la estructura genética de las poblaciones naturales de gatos.Evol. Biol. 5: 227–283

    Google Scholar 

  • Ruiz-Garcia M. 1993 Analysis of the evolution and genetic diversity within and between Balearic and Iberian cat populations.J. Hered. 84: 173–180

    PubMed  CAS  Google Scholar 

  • Ruiz-Garcia M. 1994a Genetic profiles from coat genes of natural Balearic cat populations: An eastern Mediterranean and North-African origin.Genet. Sel. Evol. 26: 39–64

    Article  Google Scholar 

  • Ruiz-Garcia M. 1994b Genetic Structure of Marseilles cat population: Is there really a strong founder effect?Genet. Sel. Evol. 26: 317–331

    Article  Google Scholar 

  • Ruiz-Garcia M., Ruiz-Garcia M. 1996 Genetic structure and Evolution at the microgeographical level of different cat populations (Fells catus) in Spain, Italy and Argentina.Acta Theriol. (in press)

  • Ruiz-Garcia M. and Jordana J. 1997 Spatial genetic structure of the “Gos d’Atura” dog breed in Catalonia (Spain).Braz. J. Genet. 20: 225–236

    Article  Google Scholar 

  • Ruiz-Garcia M. and Klein K. K. 1995 Genetic structure of domestic cat populations at macro- and micro-geographical levels: Two examples (Catalonia, Spain and Mid-western USA).J. Hered. (in press)

  • Saitou N. and Nei M. 1987 The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425

    PubMed  CAS  Google Scholar 

  • Schuh R. T. and Farris J.S. 1981 Methods for investigating taxonomic congruence and their application to the Leptopodomorpha.Syst. Zool. 30: 331–351

    Article  Google Scholar 

  • Scribner K. T. 1993 Conservation genetics of managed ungulate populations.Acta Theriol. 38, Suppl. 2: 89–101

    Google Scholar 

  • Scribner K. T., Smith M. H., Garrot R. A. and Carpentier L. H. 1991 Temporal, spatial, and age-specific changes in genotypic composition of mule deer.J. Mammal. 72: 126–137

    Article  Google Scholar 

  • Searle A. G. 1949 Gene frequencies in London’s cats.J. Genet. 49: 214–220

    Article  Google Scholar 

  • Searle A. G. 1966 Coat colour gene frequencies in Venetian cats.Carniv. Genet. Newsl. 1: 6–7

    Google Scholar 

  • Slatkin M. 1977 Gene flow and genetic drift in a species subject to frequent local extinction.Theor. Popul. Biol. 12: 253–262

    Article  PubMed  CAS  Google Scholar 

  • Smouse P. E., Long J. C. and Sokal R. R. 1986 Multiple regression and correlation extensions of the Mantel test of matrix correspondence.Syst. Zool. 35: 627–632

    Article  Google Scholar 

  • Sneath P. H. and Sokal R. R. 1973Numerical taxonomy (San Francisco: W. H. Freeman)

    Google Scholar 

  • Sokal R. R. and Oden N. L. 1978a Spatial autocorrelation in biology. 1. Methodology.Biol. J. Linn. Soc. 10: 199–228

    Article  Google Scholar 

  • Sokal R. R. and Oden N. L. 1978b Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest.Biol. J. Linn. Soc. 10: 229–249

    Article  Google Scholar 

  • Sokal R. R. and Wartenberg D. E. 1981 Space and population structure. InDynamic spatial models (eds.) D. Griffith and R. McKinnan (Amsterdam: Sijthoff and Noordhoff) pp. 186–213

    Google Scholar 

  • Sokal R. R. and Wartenberg D. E. 1983 A test of spatial autocorrelation using an isolation-by-distance model.Genetics 105: 219–237

    PubMed  Google Scholar 

  • Sokal R. R., Fiala K. L and Hart G. 1984 OTU stability and factors determining taxonomic stability: examples from Caminalcules and the Leptopodomorpha.Syst. Zool. 33: 387–407

    Article  Google Scholar 

  • Sokal R. R., Smouse P. E. and Neel J. V. 1986 The genetic structure of a tribal population, the Yanomama Indians genetics. XV. Patterns inferred by autocorrelation analysis.Genetics 114: 259–287

    PubMed  CAS  Google Scholar 

  • Sokal R. R., Oden N. L. and Barker J. S. F. 1987 Spatial structure inDrosophila buzzatii populations: simple and directional spatial autocorrelation.Am. Nat. 129: 122–142

    Article  Google Scholar 

  • Sokal R. R., Harding R. M and Oden N. L. 1989 Spatial patterns of human gene frequencies in Europe.Am. J. Phys. Anthropol. 80: 267–294

    Article  PubMed  CAS  Google Scholar 

  • Speith P. T. 1974 Gene flow and genetic differentiation.Genetics 78: 961–965

    Google Scholar 

  • Spuhler J. N. 1972 Genetic, linguistic, and geographical distances in native North America. InThe assessment of population affinities in man (eds.) J. S. Wiener and J. Huizinga (Oxford: Oxford University Press)

    Google Scholar 

  • Stewart D. T., Baker A. J. and Hindocha S. P. 1993 Genetic differentiation and population structure inSorex haydeni andS. cinereus. J. Mammal. 74: 21–32

    Article  Google Scholar 

  • Takahata N. 1983 Gene identity and genetic differentiation of populations in the finite island model.Genetics 104: 497–512

    PubMed  Google Scholar 

  • Todd N. B. 1977 Cats and commerce.Sci. Am. 237: 100–107

    Article  Google Scholar 

  • Todd N. B. 1978 An ecological, behavioral genetic model for the domestication of the cat.Carnivore 1: 52–60

    Google Scholar 

  • Todd N. B. and Kunz T. H. 1977 Mutant allele frequencies in domestic cat populations of Greece.Biol. Gallo-Hel. 6: 289–310

    Google Scholar 

  • Todd N. B. and Lloyd A. T. 1979 Mutant allele frequencies of the cats of Dublin and vicinity.Camiv. Genet. Newsl. 14: 24–30

    Google Scholar 

  • Todd N. B. and Lloyd A. T. 1984 Mutant allele frequencies in the domestic cats of Portugal and the Azores.J. Hered. 75: 495–497

    PubMed  CAS  Google Scholar 

  • Todd N. B. and Todd L. M. 1976 Mutant allele frequencies in domestic cats of Turkey and Greece.Genetica 46: 183–192

    Article  Google Scholar 

  • Todd N. B., Robinson R. and Clark J. M. 1974 Gene frequencies in domestic cats of Greece.J. Hered. 65: 227–231

    PubMed  CAS  Google Scholar 

  • Todd N. B., Sawyer L. and Todd L. M. 1977 Mutant allele frequencies in the cats of Van, Turkey.Carniv. Genet. Newsl. 3: 161–167

    Google Scholar 

  • Todd N. B., Garrad L. S. and Blumenberg B. 1979 Mutant allele frequencies in domestic cats of the Isle of Man.Carniv. Genet. Newsl. 3: 388–407

    Google Scholar 

  • Trexler J. C. 1988 Hierarchical organization of genetic variation in the sailfin molly,Poecilia latipina (Pisces: Poeciliidae).Evolution 42: 1006–1017

    Article  Google Scholar 

  • Wade M. J. and McCauley D. E. 1988 Extinction and recolonization: their effects on the genetic differentiation of local populations.Evolution 42: 995–1005

    Article  Google Scholar 

  • Wright S. 1931 Evolution in Mendelian populations.Genetics 16: 97–159

    PubMed  CAS  Google Scholar 

  • Wright S. 1943 Isolation by distance.Genetics 28: 114–138

    PubMed  CAS  Google Scholar 

  • Wright S. 1951 The genetical structure of populations.Ann. Eugen. 15: 323–354

    Google Scholar 

  • Wright S. 1965 The interpretation of population structure by F-statistics with special regards to systems of mating.Evolution 19: 395–420

    Article  Google Scholar 

  • Wright S. 1978Evolution and genetics of populations. Vol. 4, Variability within and among natural populations (Chicago: University of Chicago Press)

    Google Scholar 

  • Wright M. and Walters S. 1982El gato (Barcelona: Ed Blume)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Garcia, M. Genetic relationships among some new cat populations sampled in Europe: A spatial autocorrelation analysis. J. Genet. 76, 1–24 (1997). https://doi.org/10.1007/BF02931765

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931765

Keywords

Navigation