Skip to main content
Log in

Resolution enhancement techniques for optical lithography and optical imaging theory

  • Review
  • Optical Systems and Technologies
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Production of a fine pattern is necessary to get a high integration degree of integrated circuits. The conventional methods which utilize high numerical aperture and short wavelength exposure are limited by designing and manufacturing of a practical lens and make the focus depth narrow. Resolution enhancement techniques (RETs) have, therefore, been required and proposed. This paper introduces a phase-shifting mask, a typical RET, points out the problems and inconsistencies of conventional optical imaging theory and explains the image formation concept of expansion of plane waves. Essentially using this concept, an attempt is also made to describe some other typical RETs with potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Shiraishi, S. Hirukawa, Y. Takeuchi and N. Magome: Proc. SPIE1674 (1992) 741.

    Article  ADS  Google Scholar 

  2. K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka and K. Horie: Jpn. J. Appl. Phys.30 (1991) 3021.

    Article  ADS  Google Scholar 

  3. M. Shibuya: Japan patent 62-50811, No. 1441789 (in Japanese).

  4. M.D. Lenvenson, N.S. Viswanathan and R.A. Simpson: IEEE Trans. Electron DevicesED-29 (1982) 1828.

    Article  Google Scholar 

  5. H. Fukuda, T. Terasawa and S. Okazaki: J. Vac. Sci. Technol.B9 (1991) 3113.

    Google Scholar 

  6. K. Matsumoto, N. Shiraishi, Y. Takeuchi and S. Hirukawa: Proc. SPIE2197 (1994) 844.

    Article  ADS  Google Scholar 

  7. H. Fukuda, N. Hasegawa, T. Tanaka and T. Hayashida: IEEE Electron Device Lett.EDL-8 (1987) 179.

    Article  Google Scholar 

  8. H. Ooki, M. Komatsu and M. Shibuya: Jpn. J. Appl. Phys.33 (1994) L177.

    Article  ADS  Google Scholar 

  9. M. Shibuya, T. Ozawa, M. Komatsu and H. Ooki: Jpn. J. Appl. Phys.33 (1994) 6874.

    Article  ADS  Google Scholar 

  10. S. Asai, I. Hanyu and M. Takikawa: Jpn. J. Appl. Phys. 32, (1993) 5863.

    Article  ADS  Google Scholar 

  11. S. Inoue, T. Fujisawa, S. Tamaushi, Y. Ogawa and M. Nakase: J. Vac. Sci. Technol.B10 (1992) 3004.

    Google Scholar 

  12. S. Matsuo, K. Komatsu, Y. Takeuchi, E. Tamechika, Y. Mimura and K. Harada: IEDM ’91 Tech. Dig. (1991) p. 970.

  13. E. Tamechika, S. Matsuo, K. Komatsu, Y. Takeuchi, Y. Mimura and K. Harada: J. Vac. Sci. Technol.B10 (1992) 3027.

    Google Scholar 

  14. Y. Ichihara, S. Kawata, I. Hikima, M. Hamatani, Y. Kudoh and A. Tanimoto: Proc. SPIE1138 (1989) 137.

    ADS  Google Scholar 

  15. M.D. Levenson: Jpn. J. Appl. Phys.33 (1994) 6765.

    Article  ADS  Google Scholar 

  16. J.W. Goodman:Introduction to Fourier Optics (McGraw-Hill, 1968) Chap. 6.

  17. M.D. Levenson: Microlithography world, March/April (1992) 6.

  18. H. Tanabe, Y. Ogura and N. Aizaki: O plus E154 (1992) 90 (in Japanese).

    Google Scholar 

  19. T. Terasawa, N. Hasegawa, A. Imai, T. Tanaka and S. Katagiri: Proc. SPIE1463 (1991) 197.

    Article  ADS  Google Scholar 

  20. T. Terasawa, N. Hasegawa, T. Kurosaki and T. Tanaka: Proc. SPIE1088 (1989) 25.

    ADS  Google Scholar 

  21. N. Nitayama, T. Sato, K. Hashimoto, F. Shigematsu and M. Nakase: IEDM ’89 Tech. Dig. (1989) p. 57.

  22. H. Jinbo and Y. Yamashita: Jpn. J. Appl. Phys.Series 5,Proc. MicroProcess ’91 (1991) 10.

  23. T. Tanaka, S. Uchino, N. Hasegawa, T. Yamanaka, T. Terasawa and S. Okazaki: Jpn. J. Appl. Phys.30 (1991) 1131.

    Article  ADS  Google Scholar 

  24. H. Watanabe, Y. Todokoro and M. Inoue: IEDM ’90 Tech. Dig. (1990) p. 821.

  25. K. Nakagawa, M. Taguchi and T. Imai: Int. Electron Device Meet. (1990) 821.

  26. T. Terasawa, N. Hasegawa, H. Fukuda and S. Katagiri: Jpn. J. Appl. Phys.30 (1991) 2991.

    Article  ADS  Google Scholar 

  27. H. Watanabe: Jpn. J. Appl. Phys.33 (1994) 6790.

    Article  ADS  Google Scholar 

  28. M. Born and E. Wolf:Principles of Optics (Pergamon Press, 1980) 6th ed. Chap. 9.5, 9.1.

  29. T. Namikawa and M. Shibuya: Optik96 (1994) 93.

    Google Scholar 

  30. H.H. Hopkins: Jpn. J. Appl. Phys. 4, Suppl. I (1965) 31.

    Google Scholar 

  31. H.H. Hopkins: Proc. Phys. Soc.58 (1946) 92.

    Article  ADS  Google Scholar 

  32. H. Marx: Optik16 (1959) 610.

    Google Scholar 

  33. M. Shibuya: Appl. Opt.31 (1992) 2206.

    Article  ADS  Google Scholar 

  34. M.S. Yeung: Proc. SPIE922 (1988) 149.

    Google Scholar 

  35. M. Shibuya: Jpn. J. Opt. (KOGAKU) 13 (1984) 40 (in Japanese).

    Google Scholar 

  36. H. Ooki: Jpn. J. Opt. (KOGAKU)21 (1992) 489, 560 (in Japanese).

    Google Scholar 

  37. R.P. Feynman, R.B. Leighton and M. Sands:The Feynman Lecture on Physics Vol. 1 (Addison-Wesley Publishing Company, Inc., second-printing, 1964) Sect. 42-5 foot note.

    Google Scholar 

  38. D.G. Flagello, T. Milster and A.E. Rosenbluth: J. Opt. Soc. Am.A-13 (1996) 53.

    ADS  Google Scholar 

  39. M. Shibuya and H. Ooki: J.M.O36 (1989) 1353.

    Article  Google Scholar 

  40. E.S. Wu, J.H. Stricker, W.R. Harrell and W.W. Webb: Proc. SPIE1674 (1992) 776.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibuya, M. Resolution enhancement techniques for optical lithography and optical imaging theory. Optical Review 4, 151 (1997). https://doi.org/10.1007/BF02931670

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02931670

Key Words

Navigation