Skip to main content
Log in

Determination of minimal regrowth concentration (MRC) in clinical isolates of various biofilm-forming bacteria

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Based on the ability to attach to polymeric surfaces, the formation of biofilms was determined in 5 wild-type strains (Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanii, Escherichia coli, Staphylococcus warneri). Using modified Christensen method, minimum regrowth concentration (MRC) of piperacillin, piperacillin-tazobactam, cefoperazon, ceftazidim, cefepim, meronem, ciprofloxacin, netilmicin and amikacin for Gram-negative and of ampicillin-sulbactam, chloramphenicol, tetracycline, clindamycin, vancomycin and teicoplanin for Gram-positive bacteria was estimated in trypticase-soy broth medium after a 1-d growth on polystyrene microtiter plates. Adherent bacterial populations exhibited reduced antimicrobial susceptibility, which was not shown in submerged cultures. Our results indicate that MRC can predict therapeutic outcome of antibiotic treatment better than the minimum inhibitory concentration tests commonly used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amorena B., Gracia E., Monzón M., Leiva J., Oteiza C., Pérez M., Alabart J.L., Hernández-Yago J.: Antibiotic susceptibility assay forStaphylococcus aureus in biofilms developedin vitro.J.Antimicrob.Chemother. 44, 43–55 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ceri H., Olson M.E., Stremick C., Read R.R., Morck D., Buret A.: The Calgary Biofilm Device: a new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms.J.Clin.Microbiol. 37, 1771–1776 (1999).

    PubMed  CAS  Google Scholar 

  • Christensen G.D., Simpson W.A., Bisno A.L., Beachey E.H.: Adherence of slime-producing strains ofStaphylococcus epidermidis to smooth surfaces.Infect.Immun. 37, 318–326 (1982).

    PubMed  CAS  Google Scholar 

  • Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., Beachey E.D.: Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices.J.Clin.Microbiol. 22, 996–1006 (1985).

    PubMed  CAS  Google Scholar 

  • Costerton J.W., Stewart P.S., Grenberg E.P.: Bacterial biofilms: a common cause of persistent infections.Science 284, 1318–1322 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Cramton S.E., Gerke C., Schnell N.F., Nichols W.W., Götz F.: The intercellular adhesion (ica) locus is present inStaphylococcus aureus and is required for biofilm formation.Infect.Immun. 67, 5427–5433 (1999).

    PubMed  CAS  Google Scholar 

  • Donlan R.M., Murga R., Bell M., Toscano C.M., Carr J.H., Novicki T.J., Zuckerman C., Corey L.C., Miller J.M.: Protocol for detection of biofilms on needleless connectors attached to central venous catheters.J.Clin.Microbiol. 39, 750–753 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hoyle B.D., Costerton J.W.: Bacterial resistance to antibiotics: the role of biofilms.Progr.Drug Res. 37, 91–105 (1991).

    CAS  Google Scholar 

  • Knobloch K.M., von Osten H., Horstkotte A., Rohde H., Mack D.: Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and -negativeStaphylococcus epidermidis.Med.Microbiol.Immunol. 191, 107–114 (2002).

    Article  PubMed  Google Scholar 

  • König C., Schwank S., Blaser J.: Factors compromising antibiotic activity against biofilm ofStaphylococcus epidermidis.Eur. J.Clin.Microbiol.Infect.Dis. 20, 20–26 (2001).

    Article  PubMed  Google Scholar 

  • McKenney D., Hübner J., Müller E., Wang Y., Goldmann D.A., Pier G.B.: Theica locus ofStaphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin.Infect.Immun. 66, 4711–4720 (1998).

    PubMed  CAS  Google Scholar 

  • Monzon M., Oteiza C., Leiva J., Amorena B.: Synergy of different antibiotic combinations in biofilms ofStaphylococcus epidermidis.J.Antimicrob.Chemoter. 48, 793–801 (2001).

    Article  CAS  Google Scholar 

  • Lyte M., Freestone P.P.E., Neal C.P., Olson B.A., Haigh R.D., Bayston R., Williams P.H.: Stimulation ofStaphylococcus epidermidis growth and biofilm formation by catecholamine inotropes.Lancet 361, 130–135 (2003).

    Article  PubMed  Google Scholar 

  • Shiro H., Müller E., Gutierrez N., Boisot S., Grout M., Tosteson T.D., Goldmann D., Pier G.B.: Transpozon mutants ofStaphylococcus epidermidis deficient in elaboration of capsular polysaccharide/adhesin and slime are avirulent in a rabbit model of endocarditis.J.Infect.Dis. 169, 1042–1049 (1994).

    PubMed  CAS  Google Scholar 

  • Song W., Woo L., Kim J.S., Lee K.M.:In vitro activity of β-lactams in combination with other antimicrobial agents against resistant strains ofPseudomonas aeruginosa.Internat.J.Antimicrob.Agents 21, 8–12 (2003).

    Article  CAS  Google Scholar 

  • Stewart P.S., Costerton J.W.: Antibiotic resistance of bacteria in biofilms.Lancet 358, 135–138 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Stone J.H., Gabriel M.M., Ahearn D.G.: Adherence ofPseudomonas aeruginosa to inanimate polymers including biomaterials.J.Ind.Microbiol.Biotechnol. 23, 713–717 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Tunney M.M., Patrick S., Gorman S.P., Nixon J.R., Anderson N., Davis R.I., Hanna D., Ramage G.: Improved detection of infection in hip replacements.J.Bone Joint Surg. 80B, 568–572 (1998).

    Article  Google Scholar 

  • Watnick P., Kolter R.: Biofilm, city of microbes.J.Bacteriol. 182, 2675–2679 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Černohorská.

Additional information

This study was supported by grant no. 6818-3 from theGrant Agency of the Ministry of Health of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Černohorská, L., Votava, M. Determination of minimal regrowth concentration (MRC) in clinical isolates of various biofilm-forming bacteria. Folia Microbiol 49, 75–78 (2004). https://doi.org/10.1007/BF02931650

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931650

Keywords

Navigation