Skip to main content
Log in

Continuous aerobic phenol degradation by defined mixed immobilized culture in packed bed reactors

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A defined mixed culture ofPseudomonas putida, Commamonas testosteroni andCandida tropicalis was immobilized by adsorption on polyurethane foam, cocoa-fibers, expanded slate and sintered glass. Packed bed reactors were used for long-term continuous phenol biodegradations. Loading experiments were done to study the impact of the following parameters: (1) hydraulic retention time, (2) dissolved oxygen concentration, and (3) elimination of the oxygen limitation. After the acclimation period (≈10 d), the loading test with the individual packings showed the following maximum degradation rates: sintered glass 34, polyurethane foam 12, expanded slate 11.5, and cocoa-fibers 7.7 kg m−3 d−1. All these values were reached at a removal efficiency >99 % and with oxygen in excess. Under these conditions, the pH of the diluted unbuffered medium in the reactor effluent was 3.2–4.0 and no incompletely oxidized metabolic intermediates were found. The free cell concentration in the effluent increased after the phenol overloading time period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c in :

inlet phenol concentration, mg/L

c out :

outlet phenol concentration, mg/L

DOC:

dissolved oxygen concentration, %

FBR:

fluidized bed reactor

HRT:

hydraulic retention time, min

MM:

mineral medium

OL:

organic loading, mg L−1 h−1

PBR:

packed bed reactor

pHout :

pH of the medium outlet

PUF:

polyurethane foam

Q :

water flow rate, mL/min

q S :

phenol degradation rate, mg L−1 h−1

RE:

removal efficiency, %

V L :

working volume of reactor, mL

References

  • Acuna M.E., Perez F., Auria R., Revah S.: Microbiological and kinetic aspect of a biofilter for the removal of toluence from waste gases.Biotechnol.Bioeng.63, 175–184 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Alexieva Z., Ivanova T., Godjevargova B., Atanasov B.: Degradation of some phenol derivatives byTrichosporon cutaneum R57.Process.Biochem.37, 1215–1219 (2002).

    Article  Google Scholar 

  • Annadurai G., Juang R.S., Lee D.J.: Microbiological degradation of phenol using mixed liquors ofPseudomonas putida and activated sludge.J.Waste Manag.22, 703–710 (2002).

    Article  CAS  Google Scholar 

  • Arquiaga M.C., Canter L.W., Robertson J.M.: Microbiological characterization of the biological treatment of aircraft paint stripping wastewater.Environ.Pollut.89, 189–195 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bechard G., Bisaillon J.G., Beaudet R.: Degradation of phenol by a bacterial consortium under methanogenic conditions.Can.J.Microbiol.36, 573–578 (1990).

    Article  CAS  Google Scholar 

  • Bettmann H., Rehm H.J.: Degradation of phenol by polymer entrapped microorganisms.Appl.Microbiol.Biotechnol.20, 285–290 (1984).

    Article  CAS  Google Scholar 

  • Branyik T., Kuncová G., Páca J., Demnerová K.: Encapsulation of microbial cells into silica gel.J.Sol Gel Sci.Technol.13, 283–287 (1998).

    Article  CAS  Google Scholar 

  • Chen K.C., Lin Y.H., Chen W.H., Liu Y.C.: Degradation of phenol by PAA-immobilizedCandida tropicalis.Enzyme Microb.Technol.31, 490–497 (2002).

    Article  CAS  Google Scholar 

  • Chitra S., Sekaran G., Padmavathi S., Chandrakasan G.: Removal of phenolic compounds from wastewater using mutant strain ofPseudomonas pictorum.J.Gen.Appl.Microbiol.41, 229–237 (1995).

    Article  CAS  Google Scholar 

  • Ehrhardt H.M., Rehm H.J.: Phenol degradation by microorganisms adsorbed on activated carbon.Appl.Microbiol.Biotechnol.21, 32–36 (1985).

    Article  CAS  Google Scholar 

  • Eighmy T., Maratea D., Bishop P.: Electron microscopic examination of wastewater biofilm formation and structural components.Appl.Environ.Microbiol.45, 191–193 (1983).

    Google Scholar 

  • Gallego A., Fortunato M.S., Foglia J., Rossi S., Gemini V., Gomez L., Gomez C.E., Higa L.E., Korol S.E.: Biodegradation and detoxication of phenolic compounds by pure and mixed indigenous cultures in aerobic reactors.Internat.Biodeter.Biodegrad.52, 261–267 (2003).

    Article  CAS  Google Scholar 

  • Gonzales G., Herrera M.T., Garcia M.T., Pena M.M.: Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized bed reactor.Biores.Technol.76, 245–251 (2001).

    Article  Google Scholar 

  • Heipieper H.J., Keweloh H., Rehm H.J.: Influence of phenols on growth and membrane permeability of free and immobilizedEscherichia coli.Appl.Environ.Microbiol.57, 1213–1217 (1991).

    PubMed  CAS  Google Scholar 

  • Hinteregger C., Leitner R., Loidl M., Ferchi A., Streichsbier F.: Degradation of phenol and phenolic compounds byPseudomonas putida EKII.Appl.Microbiol.Biotechnol.37, 252–259 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Holladay D.W., Hancher C.W., Scott C.D., Chilcote D.D.: Biodegradation of phenolic waste liquors in stirred-tank, packed-bed and fluidized-bed bioreactors.J.Water Pollut.Control Fed.50, 2573–2589 (1978).

    CAS  Google Scholar 

  • Hopp J., Huegele T.: Porositätsbestimmung von Biofiltermaterialien.Entsorgungs Praxis9, 40–42 (1996).

    Google Scholar 

  • Lakhwala F.S., Goldberg B.S., Sofer S.S.: A comparative study of gel entrapped and membrane attached microbial reactors for biodegrading phenol.Bioproc.Eng.8, 9–18 (1992).

    Article  CAS  Google Scholar 

  • Mörsen A., Rehm H.J.: Degradation of phenol by mixed culture ofPseudomonas putida andCryptococcus elinovii adsorbed on activated carbon.Appl.Microbiol.Biotechnol.26, 283–288 (1987).

    Article  Google Scholar 

  • Mörsen A., Rehm H.J.: Degradation of phenol by a defined mixed culture immobilized by adsorption on activated carbon and sintered glass.Appl.Microbiol.Biotechnol.33, 206–212 (1990).

    Article  Google Scholar 

  • Oh J.S., Han Y.H.: Isolation and characterization of phenol degradingRhodococcus sp. DGUM 2011.Korean J.Appl.Microbiol. Biotechnol.25, 459–463 (1997).

    CAS  Google Scholar 

  • Okaygun M.S., Green L.A., Akgerman A.: Effect of consecutive pulsing of an inhibitory substrate on biodegradation kinetics.Environ.Sci.Technol.26, 1746–1752 (1992).

    Article  CAS  Google Scholar 

  • Páca J., Komárková E., Prell A., Stiborová M., Sobotka M.: Kinetics of phenol oxidation byCandida tropicalis: effects of oxygen supply rate and nutrients on phenol inhibition.Folia Microbiol.47, 701–708 (2002).

    Article  Google Scholar 

  • Prieto M.B., Hidalgo A., Serra J.L., Llama M.J.: Degradation of phenol byRhodococcus erthropolis UPV-I immobilized on biolite in a packed-bed reactor.J.Biotechnol.97, 1–11 (2002).

    Article  CAS  Google Scholar 

  • Rigo M., Alegre R.M.: Isolation and selection of phenol-degrading microorganisms from industrial wastewaters and kinetics of the biodegradation.Folia Microbiol.49, 41–45 (2004).

    Article  CAS  Google Scholar 

  • Sa C.S.A., Boaventura R.A.R.: Biodegradation of phenol byPseudomonas putida DSM 548 in a trickling bed reactor.Appl.Microbiol.Biotechnol.9, 211–219 (2001).

    CAS  Google Scholar 

  • Singer P.C., Pfaender F.K., Chincilli J., Lamb J.C.: Composition and biodegradability of organics in coal conversion wastewaters.Symp.Proc.Environ.Aspects Fuel Convers.Technol.3, 461–468 (1977).

    Google Scholar 

  • Watanabe K., Hino S., Takahashi N.: Responses of activated sludge to an increase in phenol loading.J.Ferment.Bioeng.82, 522–524 (1996).

    Article  CAS  Google Scholar 

  • Young L.Y., Cerniglia C.E.:Microbial Transformation and Degradation of Toxic Organic Chemicals, pp. 27–64. Wiley-Liss, New York 1995.

    Google Scholar 

  • Zache G., Rehm H.J.: Degradation of phenol by a co-immobilized entrapped mixed culture.Appl.Microbiol.Biotechnol.30, 426–432 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Páca.

Additional information

The work was supported by theCzech Science Foundation (project 104/03/0407).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Páca, J., Páca, J., Kostečková, A. et al. Continuous aerobic phenol degradation by defined mixed immobilized culture in packed bed reactors. Folia Microbiol 50, 301–308 (2005). https://doi.org/10.1007/BF02931410

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931410

Keywords

Navigation