Skip to main content
Log in

The Weyl functional near the Yamabe invariant

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For a compact manifold M ofdim M=n≥4, we study two conformal invariants of a conformal class C on M. These are the Yamabe constant YC(M) and the Ln/2-norm WC(M) of the Weyl curvature. We prove that for any manifold M there exists a conformal class C such that the Yamabe constant YC(M) is arbitrarily close to the Yamabe invariant Y(M), and, at the same time, the constant WC(M) is arbitrarily large. We study the image of the mapYW:C→(YC(M), WC(M))∈R 2 near the line {(Y(M), w)|w∈R}. We also apply our results to certain classes of 4-manifolds, in particular, minimal compact Kähler surfaces of Kodaira dimension 0, 1 or 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutagawa, K. Yamabe metrics of positive scalar curvature and conformally flat manifolds,Diff. Geom. Appl.,4, 239–258, (1994).

    Article  MATH  MathSciNet  Google Scholar 

  2. Akutagawa, K. and Botvinnik, B. The relative Yamabe invariant,Comm. Anal. Geom.,10, 925–954, (2002).

    MathSciNet  Google Scholar 

  3. Akutagawa, K. and Botvinnik, B. Yamabe metrics on cylindrical manifolds, to appear inGeom. Funct. Anal.

  4. Aubin, T. Some Nonlinear Problems in Riemannian Geometry,Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  5. Besse, A.Einstein Manifolds, Springer Verlag, Berlin, 1987.

    MATH  Google Scholar 

  6. Gursky, M. The Weyl functional, de Rham cohomology, and Kähler-Einstein metries,Ann. of Math.,148, 315–337, (1998).

    Article  MATH  MathSciNet  Google Scholar 

  7. Gursky, M. Four-manifolds with δW +=0 and Einstein constants of the sphere,Math. Ann.,318, 417–431, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  8. Gursky, M. and LeBrun, C. Yamabe invariants and spinc structures,Geom. Funct. Anal.,8, 965–977, (1998).

    Article  MATH  MathSciNet  Google Scholar 

  9. Gursky, M. and LeBrun, C. On Einstein manifolds of positive sectional curvature,Ann. Global Anal. Geom.,17, 315–328, (1999).

    Article  MATH  MathSciNet  Google Scholar 

  10. Ishida, M. and LeBrun, C. Curvature, connected sums, and Seiberg-Witten theory, math. DG/0111228.

  11. Kobayashi, O. On a conformally invariant functional of the space of Riemannian metrics,J. Math. Soc. Japan,37, 373–389, (1985).

    Article  MATH  MathSciNet  Google Scholar 

  12. Kobayashi, O. A Willmore type problem forS 2×S 2, Differential geometry and differential equations, (Shanghai, 1985), 67–72,Lecture Notes in Math.,1255, Springer-Verlag, 1987.

    Article  Google Scholar 

  13. Kobayashi, O. Scalar curvature of a metric with unit volume,Math. Ann.,279, 253–265, (1987).

    Article  MATH  MathSciNet  Google Scholar 

  14. Kobayashi, O.On the Yamabe Problem, (in Japanese), Seminar on Mathematical Sciences, 16, Keio University, Department of Mathematics, Yokohama, 1990.

    Google Scholar 

  15. Kuiper, N. On conformally flat spaces in the large,Ann. of Math.,50, 916–924, (1949).

    Article  MathSciNet  Google Scholar 

  16. LeBrun, C. Einstein metrics and Mostow rigidity,Math. Res. Lett.,2, 1–8, (1995).

    MATH  MathSciNet  Google Scholar 

  17. LeBrun, C. Four-manifolds without Einstein metrics,Math. Res. Lett.,3, 133–147, (1996).

    MATH  MathSciNet  Google Scholar 

  18. LeBrun, C. Yamabe constants and the perturbed Seiberg-Witten equations,Comm. Anal. Geom.,5, 535–553, (1997).

    MATH  MathSciNet  Google Scholar 

  19. LeBrun, C. Weyl curvature, Einstein metrics, and Seiberg-Witten theory,Math. Res. Lett.,5, 423–438, (1998).

    MATH  MathSciNet  Google Scholar 

  20. LeBrun, C. Kodaira dimension and the Yamabe problem,Comm. Anal. Geom.,7, 133–156, (1999).

    MATH  MathSciNet  Google Scholar 

  21. LeBrun, C. Ricci Curvature, minimal volumes, and Seiberg-Witten theory,Invent. Math.,145, 279–316, (2001).

    Article  MATH  MathSciNet  Google Scholar 

  22. Petean, J. Computations of the Yamabe invariant,Math. Res. Lett.,5, 703–709, (1998).

    MATH  MathSciNet  Google Scholar 

  23. Schoen, R. Conformal deformation of a Riemannian metric to constant scalar curvature,J. Diff. Geom.,20, 479–495, (1984)

    MATH  MathSciNet  Google Scholar 

  24. Schoen, R. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in calculus of variations, (Montecatini Terme, 1987), 120–154,Lecture Notes in Math.,1365, Springer-Verlag, 1989.

    Article  MathSciNet  Google Scholar 

  25. Schoen, R. and Yau, S.-T. Conformally flat manifolds, Kleinian groups and scalar curvature,Invent. Math.,92, 47–71, (1988).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Akutagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akutagawa, K., Botvinnik, B., Kobayashi, O. et al. The Weyl functional near the Yamabe invariant. J Geom Anal 13, 1–20 (2003). https://doi.org/10.1007/BF02930992

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930992

Math Subject Classifications

Key Words and Phrases

Navigation