Skip to main content
Log in

A direct proof of a theorem of Blaschke and Lebesgue

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The Blaschke-Lebesgue Theorem states that among all planar convex domains of given constant width B the Reuleaux triangle has minimal area. It is the purpose of this article to give a direct proof of this theorem by analyzing the underlying variational problem. The advantages of the proof are that it shows uniqueness (modulo rigid deformations such as rotation and translation) and leads analytically to the shape of the area-minimizing domain. Most previous proofs have relied on foreknowledge of the minimizing domain. Key parts of the analysis extend to the higher-dimensional situation, where the convex body of given constant width and minimal volume is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besicovich, A.S. Minimum area of a set of constant width,Proc. Symp. Pure Math.,7, 13–14, (1963).

    Google Scholar 

  2. Blaschke, W. Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts,Math. Ann.,76, 504–513, (1915).

    Article  MATH  MathSciNet  Google Scholar 

  3. Blaschke, W.Kreis und Kugel, Chelsea, New York, (1949).

  4. Bonnesen, T. and Fenche, W.Theorie der Konvexen Körper, Springer, Berlin, (1934).

    MATH  Google Scholar 

  5. Campi, S., Colesanti, A., and Gronchi, P. Minimum problems for volumes of constant bodies, inPartial Diferential Equations and Applications, Marcellini, P., Talenti, G., and Visintin, E., Eds., Marcel-Dekker, New York, 43–55, (1996).

    Google Scholar 

  6. Chakerian, G.D. and Groemer, H. Convex bodies of constant width, inConvexity and its Applications, Gruber, P.M. and Wills, J.M., Eds., Birkhäuser, Basel, 49–96, (1983).

    Google Scholar 

  7. Eggleston, H.G. A proof of Blaschke’s theorem on the Reuleaux triangle,Quart. J. Math. Oxford,3(2), 296–297, (1952).

    Article  MATH  MathSciNet  Google Scholar 

  8. Feynman, R.P.What Do You Care What Other People Think? W.W. Norton, New York, 166–168, (1988).

    Google Scholar 

  9. Isoperimetric ratios of Reuleaux polygons,Pacific J. Math.,10, 823–829, (1960).

    Google Scholar 

  10. Fujiwara, M. Analytic proof of Blaschke’s theorem on the curve of constant breadth with minimum area I and II,Proc. Imp. Acad. Japan,3, 307–309, (1927), and7, 300–302, (1931).

    Article  MATH  MathSciNet  Google Scholar 

  11. Ghandehari, M. An optimal control formulation of the Blaschke-Lebesgue theorem,J. Math. Anal. Appl.,200, 322–331, (1996).

    Article  MATH  MathSciNet  Google Scholar 

  12. Gilbarg, D. and Trudinger, N.S.Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, (1983).

    MATH  Google Scholar 

  13. Kawohl, B. Was ist eine runde Sache,Mitt Ges. Angew. Math. Mech.,21, 43–56, (1998).

    MATH  MathSciNet  Google Scholar 

  14. Lebesgue, H. Sur le problème des isopérimètres et sur les domaines de larguer constante,Bull. Soc. Math. France C. R., (7), 72–76, (1914).

    Google Scholar 

  15. Lebesgue, H. Sur quelques questions des minimums, relatives aux courbes orbiformes, et sur les rapports avec le calcul de variations,J. Math. Pure Appl.,4(8), 67–96, (1921).

    Google Scholar 

  16. Minkowski, H.Gesammelte Abhandlungen, I and II, Chelsea Publishing Co., New York, (1967), (original, Leipzig, 1911).

    Google Scholar 

  17. Müller, K.Spherical Harmonics, Springer Lecture Notes in Mathematics, 17, Springer, Berlin, (1966).

    MATH  Google Scholar 

  18. Schneider, R.Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, (1993).

    MATH  Google Scholar 

  19. Webster, R.J.Convexity, Oxford University Press, Oxford, (1994).

    MATH  Google Scholar 

  20. Weingarten, J. Festschrift der technischen Hochschule, Berlin, (1884). (As cited in [3].)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evans M. Harrell.

Additional information

Communicated by Michael Loss

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrell, E.M. A direct proof of a theorem of Blaschke and Lebesgue. J Geom Anal 12, 81–88 (2002). https://doi.org/10.1007/BF02930861

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930861

Math Subject Classifications

Key Words and Phrases

Navigation