Skip to main content
Log in

Anderson-Cheeger limits of smooth Riemannian manifolds, and other Gromov-Hausdorff limits

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We establish further regularity of the Cα and H1,p limits of smooth, n-dimensional Riemannian manifolds with a lower bound on Ricci tensor and injectivity radius, and an upper bound on volume, first considered in [1]. We use this extra regularity to show that such a limit is a nonbranching geodesic space, as defined in [10], and to construct a variant of a geodesic flow for such a limit. We contrast the behavior of some slightly more singular limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M. and Cheeger, J.C α-compactness for manifolds with Ricci curvature and injectivity radius bounded below,J. Differential Geom. 35, 265–281, (1992).

    MATH  MathSciNet  Google Scholar 

  2. Anderson, M., Katsuda, A., Kurylev, Y., Lassas, M., and Taylor, M. Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem,Inventiones Math. 158, 261–321, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. Berg, J. and Löfström, J.Interpolation Spaces, an Introduction, Springer-Verlag, New York, 1976.

    Google Scholar 

  4. Burago, D., Burago, Y., and Ivanov, S.A Course in Metric Geometry, Grad. Studies in Math. #33, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  5. Cheeger, J.Degeneration of Riemannian Metrics under Ricci Curvature Bounds, Lezioni Fermiane, Scuola Normale Superiore, Pubblicazioni della Classe de Scienze, Pisa, 2001.

    MATH  Google Scholar 

  6. Cheeger, J. and Ebin, D.Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975.

    MATH  Google Scholar 

  7. Hartman, P. On the local uniqueness of geodesics,Amer. J. Math. 72, 723–730, (1950).

    Article  MATH  MathSciNet  Google Scholar 

  8. Hörmander, L.The Analysis of Linear Partial Differential Operators, Vol. 3, Springer-Verlag, New York, 1985.

    Google Scholar 

  9. Petersen, P.Riemannian Geometry Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  10. Sturm, K.-Th. On the geometry of metric measure spaces I,Acta. Math. 196, 65–131, (2006).

    Article  MATH  MathSciNet  Google Scholar 

  11. Taylor, M. Grazing rays and propagation of singularities for solutions to wave equations,Comm. Pure Appl. Math. 29, 1–38, (1976).

    Article  MATH  MathSciNet  Google Scholar 

  12. Taylor, M.Tools for PDE, Math. Surveys and Monogr. #81, AMS, Providence, RI, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Claude LeBrun

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, M. Anderson-Cheeger limits of smooth Riemannian manifolds, and other Gromov-Hausdorff limits. J Geom Anal 17, 365–374 (2007). https://doi.org/10.1007/BF02930728

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930728

Math Subject Classifications

Key Words and Phrases

Navigation