Skip to main content
Log in

The Balian-Low theorem and regularity of Gabor systems

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For any positive real numbers A, B, and d satisfying the conditions\(\frac{1}{A} + \frac{1}{B} = 1\), d>2, we construct a Gabor orthonormal basis for L2(ℝ), such that the generating function g∈L2(ℝ) satisfies the condition:∫|g(x)|2(1+|x|A)/logd(2+|x|)dx < ∞ and\(\int_{\hat {\mathbb{R}}} {\left| {\hat g(\xi )} \right|^2 (1 + \left| \xi \right|^B )/\log ^d (2 + \left| \xi \right|)d\xi< \infty } \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, A. and Tolimieri, R. Abelian harmonic analysis, theta functions and function algebras on a nilmanifold,Lecture Notes in Mathematics,436, Springer-Verlag, Berlin, (1975).

    MATH  Google Scholar 

  2. Bacry, H., Grossman, A., and Zak, J. Proof of completeness of lattice states in the kq representation,Phys. Rev. B.,12, 1118–1120, (1975).

    Article  Google Scholar 

  3. Balian, R. A strong uncertainty principle in signal theory or in quantum mechanics (in French),C.R. Acad. Sci. Paris,292(20), 1357–1362, (1981).

    MathSciNet  Google Scholar 

  4. Benedetto, J.J. Gabor representations and wavelets,Contemporary Mathematics,91, 9–27, (1989).

    MathSciNet  Google Scholar 

  5. Benedetto, J.J. Frame decompositions, sampling, and uncertainty principle inequalities, inWavelets: Mathematics and Applications, 247–304. CRC Press, Boca Raton, FL, (1994).

    Google Scholar 

  6. Benedetto, J.J., Heil, C., and Walnut, D. Differentiation and the Balian-Low theorem,J. Fourier Anal. Appl.,1(4), 355–402, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonami, A., Demange, B., and Jaming, P. Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, to appear inRev. Mat. Iberoamericana.

  8. Brezin, J. Harmonic analysis on nilmanifolds,Trans. Am. Math. Soc.,150, 611–618, (1970).

    Article  MATH  MathSciNet  Google Scholar 

  9. Folland, G. and Sitaram, A. The uncertainty principle: a mathematical survey,J. Fourier Anal. Appl.,3(3), 207–238, (1997).

    Article  MATH  MathSciNet  Google Scholar 

  10. Feichtinger, H.G. and Strohmer, T., Eds., Gabor analysis and algorithms, Theory and applications,Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, MA, (1998).

    MATH  Google Scholar 

  11. Feichtinger, H.G. and Strohmer, T., Eds.,Advances in Gabor Analysis, Birkhäuser, Boston, MA, (2003).

    MATH  Google Scholar 

  12. Gelfand, I.M. Expansion in characteristic functions of an equation with periodic coefficients, (in Russian),Doklady Akad. Nauk SSSR (N.S.),73, 1117–1120, (1950).

    MathSciNet  Google Scholar 

  13. Gröchenig, K. An uncertainty principle related to the Poisson summation formula,Studia Math.,121(4), 87–104, (1996).

    MATH  MathSciNet  Google Scholar 

  14. Gröchenig, K. Foundations of time-frequency analysis,Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, MA, (2001).

    MATH  Google Scholar 

  15. Havin, V. and Jöricke, B.The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, (1994).

    MATH  Google Scholar 

  16. Heil, C. and Walnut, D. Continuous and discrete wavelet transforms,SIAM Rev.,31, 628–666, (1989).

    Article  MATH  MathSciNet  Google Scholar 

  17. Hernández, E. and Weiss G.A First Course in Wavelets, CRC Press, Boca Raton, FL, (1996).

    Google Scholar 

  18. Hörmander, L. A uniqueness theorem of Beurling for Fourier transform pairs,Ark. Mat.,29, 237–240, (1991).

    Article  MATH  MathSciNet  Google Scholar 

  19. Igusa, J.Theta Functions, Springer-Verlag, New York, Heidelberg, (1972).

    MATH  Google Scholar 

  20. Janssen, A.J.E.M. Bargmann transform, Zak transform, and coherent states,J. Math. Phys.,23(5), 720–731, (1982).

    Article  MATH  MathSciNet  Google Scholar 

  21. Janssen, A.J.E.M. The Zak transform: a signal transform for sampled time-continuous signalsPhilips J. Res.,43(1), 23–69, (1988).

    MATH  MathSciNet  Google Scholar 

  22. Low, F. Complete sets of wave packets, inA Passion for Physics-Essays in Honor of Geoffrey Chew, DeTar, C., et al., Eds., World Scientific, Singapore, 17–22, (1985).

    Google Scholar 

  23. Rado, T. and Reichelderfer, P.Continuous Transformations in Analysis, Springer-Verlag, Berlin, New York, (1955).

    MATH  Google Scholar 

  24. Weil, A. On some groups of unitary operators, (in French),Acta Math.,111, 143–211, (1964).

    Article  MATH  MathSciNet  Google Scholar 

  25. Wilczok, E. New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform,Doc. Math.,5, 201–226, (2001).

    MathSciNet  Google Scholar 

  26. Zak, J. Finite translations in solid state physics,Phys. Rev. Lett.,19, 1385–1387, (1967).

    Article  Google Scholar 

  27. Zak, J. The kq-representation in the dynamics of electrons in solids,Solid State Physics,27(1), 1–62, (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Benedetto.

Additional information

Communicated by Guido Weiss

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, J.J., Czaja, W., Gadziński, P. et al. The Balian-Low theorem and regularity of Gabor systems. J Geom Anal 13, 239–254 (2003). https://doi.org/10.1007/BF02930696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930696

Math Subject Classifications

Key Words and Phrases

Navigation