Skip to main content
Log in

Nondispersive extraction for recovering lactic acid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A nondispersive extraction process for recovery of lactic acid from fermentation broth is being developed. The criteria for selection of solvent, distribution of lactic acid between the aqueous and solvent phases, and the effect of presence of other compounds in the broth, are discussed. Working with a simulated fermentation broth (without cells), a hydrophobic membrane module has been evaluated for its effectiveness as extractor. Back extraction and its role has been demonstrated. A theoretical comparison of this process with electrodialysis shows membrane extraction to be more desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ad :

Specific surface area of alkali droplets, cm2/cm3

Ao :

Mass transfer surface area in membrane module, m2

Ac :

Total cross-sectional area of fiber tubes, cm2

C1 :

Concentration of lactic acid in the inlet solvent stream to extractor, g/L

C2 :

Concentration of lactic acid in the outlet solvent stream from extractor, g/L

do :

Outside diameter of membrane fibers, cm

dp :

Average diameter of membrane fibers, cm

FB :

Volumetric flow rate of broth, L/h

Fs :

Volumetric flow rate of solvent, L/h

kc :

Mass transfer coefficient between solvent and alkali phase in the solvent tank, cm/s

kc :

Mass transfer coefficient between solvent and alkali phase in the fiber tubes, cm/s

ko :

Over-all mass transfer coefficient across the membrane in the extractor, cm/s

m:

Distribution coefficient, dimensionless

m' :

Distribution coefficient of lactic acid at the pH of alkali solution, dimensionless

m* :

Partition coefficient of lactic acid, dimensionless

P1 :

Concentration of lactic acid in the inlet aqueous stream to extractor, g/L

P2 :

Concentration of lactic acid in the outlet aqueous stream from extractor, g/L

Pa :

Concentration of lactic acid in alkali phase, g/L

VI :

Volume of aqueous phase, L

VII :

Volume of solvent (TOPO+kerosene) phase, L

VIII :

Volume of alkali phase emulsified in the solvent, L

ØD :

Volume fraction of alkali in the solvent emulsion, L

References

  1. Lipinsky, E. S. and Sinclair, R. G. (1986),Chem. Eng. Prog. 82(8), 26.

    CAS  Google Scholar 

  2. Viniegra-Gonzalez, G. and Gomez, J. (1984),Bioconversion Systems, Wise, D. L. ed., CRC, Boca Raton, FL, pp. 17–39.

    Google Scholar 

  3. Holten, C. H., Mueller A., and Rehbinder, G. (1971),Lactic Acid—Properties and Chemistry of Lactic Acid and Derivatives, Verlag Chemie, Weinheim, Ger.

    Google Scholar 

  4. Harrero, A. A. (1983),Trends in Biotechnol. 1, 49.

    Article  Google Scholar 

  5. Kertes, A. S. and King, C. J. (1986),Biotechnol. Bioeng. 28, 269.

    Article  CAS  Google Scholar 

  6. Yabannavar, V. M. and Wang, D. I. C. (1987),Ann. NY Acad. Sci.. 506, 523.

    Article  CAS  Google Scholar 

  7. Hongo, M., Nomura, Y., and Iwahara, M. (1986),Appl. Environ. Microbiol. 52, 314.

    CAS  Google Scholar 

  8. Nomura, Y., Iwahara, M., and Hongo, M. (1988),Biotechnol. Bioeng. 30, 788.

    Article  Google Scholar 

  9. Boyaval, P., Corre, C, and Terre, S. (1987),Biotechnol. Lett. 9, 207.

    Article  CAS  Google Scholar 

  10. Tsao, G. T. (1988), Paper presented at the 2nd Corn Utilization Cofn., Oct. 18–19, Columbus, OH.

  11. Golob, J., Grilic, V., and Zadnik, B. (1981),I & EC Proc. Des. Dev. 20, 433.

    Article  CAS  Google Scholar 

  12. Ricker, N. L., Pittman, E. F., and King, C. J. (1980),J. Separ. Proc. Technol. 1, 23.

    CAS  Google Scholar 

  13. Cheng, P. S. (1989), MS Thesis, Chemical Eng. Dept, University of Missouri-Columbia, MO.

    Google Scholar 

  14. Playne, M. J. and Smith, B. R. (1983),Biotechnol. Bioeng. 25, 1251.

    Article  CAS  Google Scholar 

  15. Hayward, G. and Lau, I. (1989),Can. J. Chem. Eng. 67, 157.

    Article  CAS  Google Scholar 

  16. Dutta, R. (1981),Biotechnol. Bioeng. 23, 61.

    Article  Google Scholar 

  17. Roffler, S. R., Blanch, H. W., and Wilke, C. R. (1984),Trends in Biotechnol. 2, 129.

    Article  CAS  Google Scholar 

  18. Bar, R. and Gainer, J. L. (1987),Biotechnol. Progr. 3, 109.

    CAS  Google Scholar 

  19. Bajpai, R. K., Iannotti, E. L., Wang, C. J., and Su, B. (1990), AIChE national meeting, paper no. 62e, Orlando, FL, March 18–22.

  20. Saravanan, G. and Srinivasan, D. (1985),J. Chem. Eng. Data 30, 166.

    Article  CAS  Google Scholar 

  21. Eisen, E. O. and Joffee, J. (1966),J. Chem. Eng. Data 11, 480.

    Article  CAS  Google Scholar 

  22. Shah, D. J. and Tiwari, K. K. (1981),J. Chem. Eng. Data 26, 375.

    Article  CAS  Google Scholar 

  23. Prasad, R. and Sirkar, K. K. (1988),AIChE J. 34, 177.

    Article  CAS  Google Scholar 

  24. Prasad, R. and Sirkar, K. K. (1987),AIChE J. 33, 1057.

    Article  CAS  Google Scholar 

  25. Skelland, A. H. P. (1974),Diffusional Mass Transfer, John Wiley, NY.

    Google Scholar 

  26. Calderbank, P. H. (1967),Mixing: Theory and Practice, Uhl, V. W. and Grey, J. B. (eds.), vol. 2, Academic, NY.

    Google Scholar 

  27. Yeh, P. and Bajpai, R. K. (1989), 19th Annual Biochemical Engineering Symposium, University of Missouri-Columbia, MO, April 22.

  28. Luedeking, R. and Piret, E. L. (1959),J. Biochem. Microbiol. Tech. Eng. 1, 393.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.J., Bajpai, R.K. & Iannotti, E.L. Nondispersive extraction for recovering lactic acid. Appl Biochem Biotechnol 28, 589–603 (1991). https://doi.org/10.1007/BF02922635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922635

Index Entries

Navigation