Skip to main content
Log in

Degradation of furfural (2- furaldehyde) to methane and carbon dioxide by an anaerobic consortium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Furfural, a byproduct formed during the thermal/chemical pre-treatment of hemicellulosic biomass, was degraded to methane and carbon dioxide under anaerobic conditions. The consortium of anaerobic microbes responsible for the degradation was enriched using small continuously stirred tank reactor (CSTR) systems with daily batch feeding of biomass pretreatment liquor and continuous addition of furfural. Although the continuous infusion of furfural was initially inhibitory to the anaerobic CSTR system, adaptation of the consortium occurred rapidly with high rates of furfural addition. Addition rates of 7.35 mg furfural/700-mL reactor/d resulted in biogas productions of 375%, of that produced in control CSTR systems, fed the biomass pretreatment liquor only. The anaerobic CSTR system fed high levels of furfural was stable, with a sludge pH of 7.1 and methane gas composition of 69%, compared to the control CSTR, which had a pH of 7.2 and 77% methane. CSTR systems in which furfural was continuously added resulted in 80% of the theoretically expected biogas. Intermediates in the anaerobic biodegradation of furfural were determined by spike additions in serum-bottle assays using the enriched consortium from the CSTR systems. Furfural was converted to several intermediates, including furfuryl alcohol, furoic acid, and acetic acid, before final conversion to methane and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dean, F. M. (1963),Naturally Occurring Ring Compounds, Butterworths, London.

    Google Scholar 

  2. Robertson, G. L. and Samaniego, C. M. L. (1986),J. Food Sci. 51, 184–187.

    Article  CAS  Google Scholar 

  3. Kaanane, A., Kane, D., and Labuza, T. P. (1988),J. Food Sci. 53, 1470–1473.

    Article  Google Scholar 

  4. El-Nemur, S. E., Ismail, I. A., and Askar, A. (1988),Food Chem. 10, 269–276.

    Article  Google Scholar 

  5. Calvi, J. P. and Francis, F. J. (1978),J. Food Sci. 43, 1448–1456.

    Article  CAS  Google Scholar 

  6. Rapp, A., Guntert, M., and Ullemeyer, H. (1985),Z. Lebensm. Unters. Forsch. 180, 109–116.

    Article  CAS  Google Scholar 

  7. Simpson, R. F. (1980),J. Sci. Food Agric. 31, 214–222.

    Article  CAS  Google Scholar 

  8. Howells, J. S., Johnston, D., and Vojodic, P. R. (1988),Anal. Proc. 25, 162, 163.

    CAS  Google Scholar 

  9. Service, E. G., Shinnie, G. B., and MacLeod, T. M. (1982),J. Clin. Hosp. Pharm. 7, 287–292.

    CAS  Google Scholar 

  10. Hung, C. T., Selkirk, A. B., and Taylor, R. B. (1982),J. Clin. Hosp. Pharm. 7, 17–24.

    CAS  Google Scholar 

  11. Schwald, W., Brownell, H. H., and Saddler, J. N. (1988),J. Wood Chem. Technol. 8, 543–560.

    Article  CAS  Google Scholar 

  12. Bobleter, O., Schwald, W., Concin, R., and Binder, H. (1986),J. Carbohydr. Chem. 5, 387–400.

    Article  CAS  Google Scholar 

  13. Bonn, G., and Bobleter, O. (1984),Chromatographk 18, 445–448.

    Article  CAS  Google Scholar 

  14. Chapman, G. W., Burdick, D., Higman, H. C, and Robertson, J. A. (1978),J. Sci. Food Agric. 29, 312–316.

    Article  CAS  Google Scholar 

  15. Garrett, E. R. and Dvorchik, B. H. (1969),J. Pharm. Sci. 58, 813–820.

    Article  CAS  Google Scholar 

  16. Grohmann, K., Himmel, M., Rivard, C, Tucker, M., and Baker, J. (1984),Biotechnol. Bioeng. Symp. 14, 138–157.

    Google Scholar 

  17. Grohmann, K., Torget, R., and Himmel, M. (1985),Biotechnol. Bioeng. Symp. 15, 59–80.

    Google Scholar 

  18. Rivard, C. J., Himmel, M. E., and Grohmann, K. (1985),Biotechnol. Bioeng. Symp. 15, 375–385.

    Google Scholar 

  19. Grohmann, K., Torget, R., and Himmel, M. (1986),Biotechnol. Bioeng. Symp. 17, 135–151.

    CAS  Google Scholar 

  20. McCarty, P. L., Young, L. Y., Stuckey, D. C, and Healy, J. B. Jr. (1977),Microbial Energy Conversion, Schlegel, H. G. and Barnea, J., eds., Pergamon, Oxford, pp. 179–199.

    Google Scholar 

  21. Benjamin, M. M., Woods, S. L., and Ferguson, J. F. (1984),Water Res. 18, 601–607.

    Article  CAS  Google Scholar 

  22. Vitrinskaya, A. M. and Soboleva, G. A. (1975),Prikl. Biokhim. Mikrobiol. 11, 649–652.

    CAS  Google Scholar 

  23. Pfiefer, P. A., Bonn, G., and Bobleter, O. (1984),Biotechnol. Lett. 6, 541–546.

    Article  Google Scholar 

  24. Morimoto, S., Hirashima, T., and Ohashi, M. (1968),Hakko Kogaku Zasshi 46, 276–281.

    CAS  Google Scholar 

  25. Kitcher, J. P. (1972), Ph.D. thesis, University of Wales.

  26. Holcenberg, J. S., Hughes, D. E., and Lowenstein, J. M. (1969),J. Biol. Chem. 244, 1194–1199.

    CAS  Google Scholar 

  27. Hirschberg, R. and Ensign, J. C. (1971),J. Bacteriol. 108, 757–768.

    CAS  Google Scholar 

  28. Kakinuma, A. and Yamatodani, S. (1973),Nature 201, 420–428.

    Article  Google Scholar 

  29. Brune, G., Schoberth, S. M., and Sahm, H. (1982),Process Biochem. 17, 20–35.

    CAS  Google Scholar 

  30. Brune, G., Schoberth, S. M., and Sahm, H. (1983),Appl. Environ. Microbiol. 46, 1187–1192.

    CAS  Google Scholar 

  31. Folkerts, M., Ney, U., Kneifel, H., Stackebrandt, E., White, E. G., Foerstel, H., Schoberth, S. M., and Sahm, H. (1989),Syst. Appl. Microbiol. 11, 161–169.

    CAS  Google Scholar 

  32. Henson, J. M., Bordeaux, F. M., Rivard, C. J., and Smith, P. H. (1986),Appl. Environ. Microbiol. 51, 288–292.

    CAS  Google Scholar 

  33. Rivard, C. J., Bordeaux, F. M., Henson, J. M., and Smith, P. H. (1987),Appl. Biochem. Biotechnol. 17, 245–261.

    Article  Google Scholar 

  34. Rivard, C. J., Himmel, M. E., and Grohmann, K. (1984),Proceedings for the First Symposium on Biotechnological Advances in Processing Municipal Wastes for Fuels and Chemicals, ANL/CNSV-TM-167 pp. 261-282.

  35. Hungate, R. E. (1969),Methods in Microbiology, vol.3B, pp. 117–132.

    Article  CAS  Google Scholar 

  36. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., and Wolfe, R. S. (1979),Microbiol. Rev. 43, 260–296.

    CAS  Google Scholar 

  37. Wolin, A. E., Wolin, M. J., and Wolfe, R. S. (1963),J. Biol. Chem. 238, 2882- 2886.

    Google Scholar 

  38. Cheeseman, P., Toms-Wood, A., and Wolfe, R. S. (1972),J. Bacteriol. 112, 527–531.

    CAS  Google Scholar 

  39. Evans, W. C. and Fuchs, G. (1989),Annu. Rev. Microbiol. 42, 289–317.

    Article  Google Scholar 

  40. Racker, E. (1957),Methods in Enzymology vol.III, pp. 293–296.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivard, C.j., Grohmann, k. Degradation of furfural (2- furaldehyde) to methane and carbon dioxide by an anaerobic consortium. Appl Biochem Biotechnol 28, 285–295 (1991). https://doi.org/10.1007/BF02922608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922608

Index Entries

Navigation