Skip to main content
Log in

Jump problem and removable singularities for monogenic functions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article the jump problem for monogenic functions (Clifford holomorphicity) on the boundary of a Jordan domain in Euclidean spaces is investigated. We shall establish some criteria that imply the uniqueness of the solution in terms of a natural analogue of removable singularities in the plane to ℝn+1 (n ≥ 2). Sufficient conditions to extend monogenically continuous Clifford algebra valued functions across a hypersurface are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaya, A.R., Peña, P.D., and Reyes, B. J. Clifford Cauchy type integrals on Ahlfors-David regular surfaces in ℝm+1,Adv. Appl. Clifford Algebras 13(2), 133–156, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. Blaya, A. R. and Reyes, B.J. On the Riemann Hilbert type problems in Clifford analysis,Adv. Appl. Clifford Algebras 11(1), 15–26, (2001).

    MathSciNet  MATH  Google Scholar 

  3. Blaya, A. R., Reyes, B. J., Gerus, O., and Shapiro, M. The Clifford-Cauchy transform with a continuous density: N. Davydov theorem,Math. Methods Appl. Sci. 28(7), 811–825, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. Blaya, A. R., Reyes, B. J., Garcia, M. T., and Peña, P. D. Weighted Cauchy transforms in Clifford analysis,Complex Variables Theory Elliptic Equat. 51(5–6), May–June, 397–406, (2006).

    Article  MATH  Google Scholar 

  5. Blaya, A. R. and Reyes, B. J. Removable singularities for quaternionic monogenic functions of Zygmund class,J. Nat. Geom. 18(1–2), 115–124, (2000).

    MathSciNet  MATH  Google Scholar 

  6. Blaya, A. R. and Reyes, B. J. Boundary value problems for quaternionic monogenic functions on nonsmooth surfaces,Adv. Appl. Clifford Algebras 9(1), 1–22, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  7. Blaya, A. R. and Reyes, B. J. Solvability of a Riemann linear conjugation problem on a fractal surface,Extrada Math. 13(2), 239–241, (1998).

    MATH  Google Scholar 

  8. Bernstein, S. Riemann-Hilbert problems in Clifford analysis, Clifford analysis and its applications, (Prague, 2000), 1–8,NATO Sci. Ser. II Math. Phys. Chem. 25, Kluwer Acad. Publ., Dordrecht, (2001).

    Google Scholar 

  9. Reyes, B. J. and Blaya, A. R. The quaternionic Riemann problem with a natural geometric condition on the boundary,Complex Var. Theory Appl. 42(2), 135–149, (2000).

    MathSciNet  MATH  Google Scholar 

  10. Reyes, B. J. and Blaya, A. R. On the Cauchy type integral and the Riemann problem, Clifford algebras and their applications in mathematical physics, 2 Vol. 81–94, (Ixtapa, 1999),Progr. Theoret. Phys. 19, Birkhäuser, Boston, MA, (2000).

    Google Scholar 

  11. Reyes, B.J. and Blaya, A. R. Cauchy transform and rectifiability in Clifford analysis,Zeitschrift für Analysis und ihre Anwendungen 24(1), 167–178, (2005).

    MATH  Google Scholar 

  12. Brackx, F., Delanghe, R., and Sommen, F. Clifford analysis,Res. Notes Math. 76, Pitman (Advanced Publishing Program), Boston, MA, (1982).

    MATH  Google Scholar 

  13. Delanghe, R., Sommen, F., and Soucek, V.Clifford Algebra and Spinor-Valued Functions, Kluwer Academic Publishers Group, Dordrecht, 1992.

    MATH  Google Scholar 

  14. Dolzhenko, E. P. On the removal of singularities of analytic functions,Amer. Math. Soc. Transl. 97, 33–41, (1970).

    Google Scholar 

  15. Falconer, K. J. The geometry of fractal sets,Cambridge Tracts in Math. 85, Cambridge University Press, Cambridge, (1986).

    Google Scholar 

  16. Feder, J.Fractals, With a foreword by Benoit B. Mandelbrot,Physics of Solids and Liquids, Plenum Press, New York, 1988.

    Google Scholar 

  17. Federer, H.Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.

    MATH  Google Scholar 

  18. Garnett, J. Analytic capacity and measure,Lecture Notes in Math. 297, Springer-Verlag, Berlin-New York, (1972).

    MATH  Google Scholar 

  19. Gürlebeck, K. and Sprössig, W.Quaternionic and Clifford Calculus for Physicists and Engineers, John Wiley & Sons, Publ., 1997.

  20. Harrison, J. and Norton, A. Geometric integration on fractal curves in the plane,Indiana Univ. Math. J. 40(2), 567–594, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  21. Harrison, J. and Norton, A. The Gauss-Green theorem for fractal boundaries,Duke Math. J. 67(3), 575–588, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  22. Kats, B. A. On the solvability of the Riemann boundary value problem on a fractal arc, (Russian)Mat. Zametki 53(5), 69–75, (1993); translation inMath. Notes 53(5–6), 502–505, (1993).

    MathSciNet  Google Scholar 

  23. Kats, B. A. The Riemann problem on a closed Jordan curve, (Russian),Izv. Vyssh. Uchebn. Zaved. Mat. (4), 68–80, (1983).

  24. Kats, B. A. Integration over a plane fractal curve, a jump problem and generalized measures, (Russian),Izv. Vyssh. Uchebn. Zaved. Mat. 10, 53–65, (1998); translation inRussian Math. (Iz. VUZ) 42(10), 51–63, (1999).

    MathSciNet  Google Scholar 

  25. Kats, B.A. Integrationoverafractalcurveandthejumpproblem, (Russian),Mat. Zametki 64(4), 549–557, (1998); translation inMath. Notes 64(3–4), 476–482, (1999).

    MathSciNet  Google Scholar 

  26. Mandelbrot, B.The Fractal Geometry of Nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, CA, 1982.

    MATH  Google Scholar 

  27. Nguyen, X. Uy. Removable sets of analytic functions satisfying a Lipschitz condition,Ark. Mat. 17(1), 19–27, (1979).

    Article  MathSciNet  MATH  Google Scholar 

  28. Shapiro, M. V. and Vasilevski, N. L. Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems, I, ψ-hyperholomorphic function theory,Complex Variables Theory Appl. 27(1), 17–46, (1995).

    MathSciNet  MATH  Google Scholar 

  29. Shapiro, M. V. and Vasilevski, N. L. Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems, II, Algebras of singular integral operators and Riemann type boundary value problems,Complex Variables Theory Appl. 27(1), 67–96, (1995).

    MathSciNet  MATH  Google Scholar 

  30. Stein, E. M.Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Abreu-Blaya.

Additional information

Communicated by Jenny Harrison

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu-Blaya, R., Bory-Reyes, J. & Peña-Peña, D. Jump problem and removable singularities for monogenic functions. J Geom Anal 17, 1–13 (2007). https://doi.org/10.1007/BF02922079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922079

Math Subject Classifications

Key Words and Phrases

Navigation