Skip to main content
Log in

The Levi Monge-Ampère equation: Smooth regularity of strictly Levi convex solutions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove smoothness of strictly Levi convex solutions to the Levi equation in several complex variables. This equation is fully non linear and naturally arises in the study of real hypersurfaces in ℂn+1, for n ≥ 2. For a particular choice of the right-hand side, our equation has the meaning of total Levi curvature of a real hypersurface ℂn+1 and it is the analogous of the equation with prescribed Gauss curvature for the complex structure. However, it is degenerate elliptic also if restricted to strictly Levi convex functions. This basic failure does not allow us to use elliptic techniques such in the classical real and complex Monge-Ampère equations. By taking into account the natural geometry of the problem we prove that first order intrinsic derivatives of strictly Levi convex solutions satisfy a good equation. The smoothness of solutions is then achieved by mean of a bootstrap argument in tangent directions to the hypersurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedford, E. and Gaveau, B. Hypersurfaces with bounded Levi form,Indiana Univ. J.,27(5), 867–873, (1978).

    Article  MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L., Kohn, J.J., Niremberg, L., and Spruck, J. The Dirichlet problem for non-linear second-order elliptic equations II: Complex Monge-Ampère and uniformly elliptic equations,Comm. Pure Appl. Math.,38, 209–252, (1985).

    Article  MathSciNet  MATH  Google Scholar 

  3. Capogna, L., Danielli, D., and Garofalo, N. Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations,Am. J. Math.,118(6), 1153–1196, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  4. Citti, G. C regularity of solutions of a quasilinear equation related to the Levi operator,Ann. Scuola Norm. Sup. di Pisa Cl. Sci.,4, vol. XXIII, 483–529, (1996).

    MathSciNet  Google Scholar 

  5. Citti, G. C regularity of solutions of the Levi equation,Ann. Inst. H. Poincaré, Anal. non Linéaire,15(4), 517–534, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  6. Citti, G., Lanconelli, E., and Montanari, A. On the smoothness of viscosity solutions of the prescribed Levi-curvature equation,Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.,10, 61–68, (1999).

    MathSciNet  MATH  Google Scholar 

  7. Citti, G., Lanconelli, E., and Montanari, A. Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature,Acta Math.,188, 87–128, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. Citti, G. and Montanari, A. Strong solutions for the Levi curvature equation,Adv. Dig. Equ.,5(1–3), 323–342, (2000).

    MathSciNet  MATH  Google Scholar 

  9. Citti, G. and Montanari, A. Regularity properties of Levi flat graphs,C.R. Acad. Sci. Paris,329(1), 1049–1054, (1999).

    MathSciNet  MATH  Google Scholar 

  10. Citti, G. and Montanari, A. Analytic estimates for solutions of the Levi equation,J. Diff. Equ.,173, 356–389, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. Citti, G. and Montanari, A. C regularity of solutions of an equation of Levi’s type in ℝ2n+1,Ann. Mat. Pura Appl.,180, 27–58, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. Citti, G. and Montanari, A. Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations,Trans. Am. Math. Soc.,354, 2819–2848, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Angelo, J.P.Several Complex Variables and the Geometry of Real Hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, (1993).

    Google Scholar 

  14. Folland, G.B. Subelliptic estimates and functions spaces on nilpotent Lie groups,Ark. Mat.,13, 161–207, (1975).

    Article  MathSciNet  MATH  Google Scholar 

  15. Folland, G.B. and Stein, E.M. Estimates for the\(\bar \partial _b \) complex and analysis on the Heisenberg group,Comm. Pure Appl. Math.,20, 429–522, (1974).

    Article  MathSciNet  Google Scholar 

  16. Gilgarg, D. and Trudinger, N.S.Elliptic Partial Differential Equations of Second-Order, Grundlehrer der Math. Wiss., vol. 224, Springer-Verlag, New York, (1977).

    Google Scholar 

  17. Hörmander, L.An Introduction to Complex Analysis in Several Variables, Von Nostrand, Princeton, NJ, (1966).

    MATH  Google Scholar 

  18. Hörmander, L. Hypoelliptic second-order differential equations,Acta Math.,119, 147–171, (1967).

    Article  MathSciNet  MATH  Google Scholar 

  19. Krantz, S.Function Theory of Several Complex Variables, John Wiley & Sons, New York, (1982).

    MATH  Google Scholar 

  20. Lascialfari, F. and Montanari, A. Smooth regularity for solutions of the Levi Monge-Ampère equation, to appear onAtti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.,12, 115–123, (2001).

    MathSciNet  MATH  Google Scholar 

  21. Montanari, A. Hölder a priori estimates for second-order tangential operators on CR manifolds,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), vol.II, 345–378, (2003).

    MathSciNet  Google Scholar 

  22. Nagel, A., Stein, E.M., and Wainger, S. Balls and metrics defined by vector fields I: basic properties,Acta Math.,155, 103–147, (1985).

    Article  MathSciNet  MATH  Google Scholar 

  23. Range, R.M.Holomorphic Functions and Integral Representation Formulas in Several Complex Variables, Springer-Verlag, New York, (1986).

    Google Scholar 

  24. Rothschild, L.P. and Stein, E.M. Hypoelliptic differential operators on nilpotent groups,Acta Math.,137, 247–320, (1977).

    Article  MathSciNet  MATH  Google Scholar 

  25. Sánchez-Calle, A. Fundamental solutions and geometry of the sum of squares of vector fields,Invent. Math.,78, 143–160, (1984).

    Article  MathSciNet  MATH  Google Scholar 

  26. Slodkowski, Z. and Tomassini, G. The Levi equation in higher dimension and relationships to the envelope of holomorphy,Am. J. Math.,116, 479–499, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  27. Slodkowski, Z. and Tomassini, G. Weak solutions for the Levi equation and envelope of holomorphy,J. Funct. Anal.,101(4), 392–407, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  28. Tomassini, G. Geometric Properties of Solutions of the Levi equation,Ann. Mat. Pura Appl. (4),152, 331–344, (1988).

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, C.J. Regularity for quasilinear second-order subelliptic equations,Comm. Pure Appl. Math.,45, 77–96, (1992).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Montanari.

Additional information

Communicated by Jeffery McNeal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montanari, A., Lascialfari, F. The Levi Monge-Ampère equation: Smooth regularity of strictly Levi convex solutions. J Geom Anal 14, 331–353 (2004). https://doi.org/10.1007/BF02922076

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922076

Math Subject Classifications

Key Words and Phrases

Navigation