Skip to main content
Log in

Density of weighted wavelet frames

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

If ψ ∈ L2(R), Λ is a discrete subset of the affine groupA =R + ×R, and w: Λ →R + is a weight function, then the weighted wavelet system generated by ψ, Λ, and w is\(\mathcal{W}(\psi ,\Lambda ,\omega ) = \{ \omega (a,b)^{1/2} a^{ - 1/2} \psi (\frac{x}{a} - b):(a,b) \in \Lambda \} \). In this article we define lower and upper weighted densities D w (Λ) and D +w (Λ) of Λ with respect to the geometry of the affine group, and prove that there exist necessary conditions on a weighted wavelet system in order that it possesses frame bounds. Specifically, we prove that if W(ψ, Λ, w) possesses an upper frame bound, then the upper weighted density is finite. Furthermore, for the unweighted case w = 1, we prove that if W(ψ, Λ, 1) possesses a lower frame bound and D +w −1) < ∞, then the lower density is strictly positive. We apply these results to oversampled affine systems (which include the classical affine and the quasi-affine systems as special cases), to co-affine wavelet systems, and to systems consisting only of dilations, obtaining some new results relating density to the frame properties of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balan, R. Stability theorems for Fourier frames and wavelet Riesz bases,J. Fourier Anal. Appl.,3(5), 499–504, (1997).

    Article  MATH  MathSciNet  Google Scholar 

  2. Balan, R., Casazza, P.G., Heil, C., and Landau, Z. Excesses of Gabor frames,Appl. Comput. Harmon. Anal.,14(2), 87–106, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  3. Balan, R., Casazza, P.G., Heil, C., and Landau, Z. Density, excesses, and localization of frames, preprint.

  4. Benedetto, J.J., Heil, C., and Walnut, D. Differentiation and the Balian-Low theorem,J. Fourier Anal. Appl.,1(4), 355–402, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  5. Bownik, M. Quasi-affine systems and the Calderón condition, inProc. Conf. Harmonic Analysis, (Mt. Holyoke, MA, 2001),Contemp. Math., American Mathematical Society, Providence, RI, to appear.

    Google Scholar 

  6. Christensen, O., Deng, B., and Heil, C. Density of Gabor frames,Appl. Comput. Harmon. Anal.,7(3), 292–304, (1999).

    Article  MATH  MathSciNet  Google Scholar 

  7. Dai, X., Larson, D.R., and Speegle, D.M. Wavelet sets in Rn,J. Fourier Anal. Appl.,3(4), 451–456, (1997).

    Article  MATH  MathSciNet  Google Scholar 

  8. Daubechies, I. The wavelet transform, time-frequency localization and signal analysis,IEEE Trans. Inform. Theory,39, 961–1005, (1990).

    Article  MathSciNet  Google Scholar 

  9. Daubechies, I.Ten Lectures on Wavelets, SIAM, Philadelphia, (1992).

    MATH  Google Scholar 

  10. Feichtinger, H.G. and Gröbner, P. Banach spaces of distributions defined by decomposition methods, I,Math. Nachr.,123, 97–120, (1985).

    Article  MATH  MathSciNet  Google Scholar 

  11. Gressman, P., Labate, D., Weiss, G., and Wilson, E.N. Affine, quasi-affine and co-affine wavelets, inBeyond Wavelets, Stöckler, J. and Welland, G., Eds., Academic Press, San Diego, to appear.

  12. Gröchenig, K. and Razafinjatovo, H. On Landau’s necessary density conditions for sampling and interpolation of band-limited functions,J. London Math. Soc. (2),54(3), 557–565, (1996).

    MATH  MathSciNet  Google Scholar 

  13. Grossmann, A., Morlet, J., and Paul, T. Transforms associated to square integrable group representations II: examples,Ann. Inst. H. Poincaré Phys. Théor.,45, 293–309, (1986).

    MATH  MathSciNet  Google Scholar 

  14. Hernandez, E., Labate, D., Weiss, G., and Wilson, E.N. Oversampling of reproducing systems, preprint.

  15. Hörmander, L.An Introduction to Complex Analysis in Several Variables, North-Holland, New York, (1973).

    MATH  Google Scholar 

  16. Janssen, A.J.E.M. Signal analytic proofs of two basic results on lattice expansions,Appl. Comput. Harmon. Anal.,1(4), 350–354, (1994).

    Article  MATH  MathSciNet  Google Scholar 

  17. Landau, H. On the density of phase-space expansions,IEEE Trans. Inform. Theory,39, 1152–1156, (1993).

    Article  MATH  Google Scholar 

  18. Ramanathan, J. and Steger, T. Incompleteness of sparse coherent states,Appl. Comput. Harmon. Anal.,2(2), 148–153, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  19. Rieffei, M. Von Neumann algebras associated with pairs of lattices in Lie groups,Math. Ann.,257, 403–418, (1981).

    Article  MathSciNet  Google Scholar 

  20. Ron, A. and Shen, Z. Affine systems in L2 (Rd): the analysis of the analysis operator,J. Funct. Anal.,3, 617–637, (1997).

    MathSciNet  Google Scholar 

  21. Seip, K. Sampling and interpolation in the Bargmann-Fock space, I,J. Reine Angew. Math.,429, 91–106, (1992).

    MATH  MathSciNet  Google Scholar 

  22. Seip, K. Beurling type density theorems in the unit disk,Invent. Math.,113, 21–39, (1993).

    Article  MATH  MathSciNet  Google Scholar 

  23. Sun, W. and Zhou, X. Density of irregular wavelet frames, preprint.

  24. Sun, W. and Zhou, X. Density and stability of wavelet frames, preprint.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Heil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heil, C., Kutyniok, G. Density of weighted wavelet frames. J Geom Anal 13, 479–493 (2003). https://doi.org/10.1007/BF02922055

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922055

Math Subject Classifications

Key Words and Phrases

Navigation