Skip to main content
Log in

Geometry of Reinhardt domains of finite type in ℂ2

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The asymptotic behavior of the holomorphic sectional curvature of the Bergman metric on a pseudoconvex Reinhardt domain of finite type in ℂ2 is obtained by rescaling locally the domain to a model domain that is either a Thullen domain Ω m = {(z 1,z 2); ¦z 1¦2 + ¦z 2¦2m < 1 or a tube domainT m = {(z 1,z 2); Imz1 + (Imz2)2m < 1}. The Bergman metric for the tube domainT m is explicitly calculated by using Fourier-Laplace transformation. It turns out that the holomorphic sectional curvature of the Bergman metric on the tube domainT m at (0, 0) is bounded above by a negative constant. These results are used to construct a complete Kähler metric with holomorphic sectional curvature bounded above by a negative constant for a pseudoconvex Reinhardt domain of finite type in ℂ2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, M.Iteration theory of Holomorphic Maps on Taut Manifold. Mediterranean Press, Cosenza, 1989.

    Google Scholar 

  2. Azukawa, K., and Suzuki, M. The Bergman metric on a Thullen domain.Nagoya Math. J. 89, 1–11 (1983).

    MathSciNet  MATH  Google Scholar 

  3. Barrett, D. Behavior of the Bergman projection on the Diederich-Fornaess worm.Acta Math. 169, 1–10 (1992).

    Article  MathSciNet  Google Scholar 

  4. Bedford, E., and Fornaess, J. A construction of peak functions on weakly pseudoconvex domains.Ann. of Math. 107, 555–568 (1978).

    Article  MathSciNet  Google Scholar 

  5. Bergman, S.The Kernel Function and Conformal Mapping. AMS, Providence, RI, 1970

    MATH  Google Scholar 

  6. Boas, H., and Straube, E. On equality of line type and variety type of real submanifolds of ℂn.J. Geom. Anal. 2, 95–98 (1992).

    MathSciNet  MATH  Google Scholar 

  7. Carmignani, R. Envelopes of holomorphy and holomorphic convexity.Trans. of AMS 179, 415–430 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, S. Y., and Yau, S. T. On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation.Comm. Pure Appl. Math. 33, 507–544 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  9. Diederich, K. Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten.Math. Ann. 187, 9–36 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  10. Fefferman, Ch. The Bergman Kernel and biholomorphic maps of pseudoconvex domains.Invent. Math. 26, 1–65 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  11. Fuks, B.Special Chapters in the Theory of Analytic Functions of Several Complex Variables. Transl of Math Monographs, vol. 14. AMS, 1965.

  12. Graham, I. Boundary behavior of the Carathéodory and the Kobayashi metrics on strongly pseudoconvex domains in Cn with smooth boundary.Trans. A.M.S. 207, 219–240 (1975).

    Article  MATH  Google Scholar 

  13. Griffiths, P. Two theorems on extension of holomorphic mappings.Invent. Math. 14, 27–62 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  14. Hörmander, L. L2 estimates and existence theorems for the\(\bar \partial - operator\).Acta Math. 113, 89–152 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, K.-T., and Yu, J. Limiting behavior of the Bergman curvature near the C2 strongly pseudoconvex points. Preprint, 1993 (to appear inPacific J. Math.).

  16. Klembeck, P. Kähler metrics of negative curvature, the Bergman metric near the boundary and the Kobayashi metric on smooth bounded strictly pseudoconvex sets.Indiana Univ. Math. J. 27, 275–282 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  17. Kobayashi, S. Geometry of bounded domains.Trans. AMS 92, 267–290 (1959).

    Article  MATH  Google Scholar 

  18. Kobayashi, S. Hyperbolic manifolds and holomorphic mappings.Pure and Appl. Math. 2, M. Dekker, 1970.

  19. Korányi, A. The Bergman kernel function for tubes over convex cones.Pacific J. Math. 12, 1355–1359 (1962).

    MathSciNet  MATH  Google Scholar 

  20. McNeal, J. Holomorphic sectional curvature of some pseudoconvex domains.Proc. AMS 107, 113–117 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  21. Mok, N., and Yau, S. T. Completeness of the Kähler-Einstein metric on bounded domains and the curvature characterization of domains of holomorphy by curvature conditions.Proc. Symp. Pure Math. 29, 41–59 (1983).

    MathSciNet  Google Scholar 

  22. Boutet der Monvel, L. Singularity of the Bergman kernel.Lecture Notes in Pure and Applied Math.143, 13–30, Marcel Dekker, 1992

    Google Scholar 

  23. Ostow, G., and Siu, Y.-T. A compact Kähler surface of negative curvature not covered by the ball.Ann. of Math. 112, 321–360 (1980).

    Article  MathSciNet  Google Scholar 

  24. Ohsawa, T. On complete Kähler domains with C1-boundary.Publ. Res. Inst. Math. Sci. Kyoto Univ. 16, 929–940 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  25. Prudnikov, A., Brychkov, Y., and Marichov, O.Integrals and Series. (Translated from Russian) vol. 1. Gordon and Breach, 1986.

  26. Ramadanov, I. Sur une propriété de la fonction de Bergman.Comt. Rend. Acad. Bulg. Sci. 20, 759–762 (1967).

    MathSciNet  MATH  Google Scholar 

  27. Shiffman, B. Extension of holomorphic maps into hermitian manifolds.Math. Ann. 194, 249–258 (1971).

    Article  MathSciNet  Google Scholar 

  28. Skwarczyński, M. Biholomorphic invariants related to the Bergman function.Dissertation Math. 173, 1–64 (1980).

    Google Scholar 

  29. Wu, H. Old and new invariant metrics on complex manifolds.Several Complex Variables: Proc. of the Mittag-Leffler Inst., 1987–1988 (J. Fornaess, ed.). Princeton University Press, 640–682.

  30. Yang, P. On Kähler manifolds with negative holomorphic bisectional curvatures.Duke Math. J. 32, 871–874 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqi Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, S. Geometry of Reinhardt domains of finite type in ℂ2 . J Geom Anal 6, 407–431 (1996). https://doi.org/10.1007/BF02921658

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921658

Math Subject Classification

Key Words and Phrases

Navigation