Skip to main content
Log in

Direct microbial conversion

Prospects, progress, and obstacles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Process development is reviewed for ethanol production from cellulosic biomass via direct microbial conversion (DMC). Experimental data addressing cellulase production and ethanol tolerance are also presented for the candidate DMC organismsClostridium thermocellum andClostridium thermosaccharolyticum. Two potential paths are identified for obtaining organisms for use in DMC. Path 1 involves modification of excellent ethanol producers, so that they also become good cellulase producers; Path 2 involves modification of excellent cellulase producers, so that they also become good ethanol producers. Cellulase production, ethanol tolerance, and ethanol selectivity are considered for both Path 1 and Path 2 organisms. It is concluded thatin situ cellulase production has the potential to allow cost reductions relative to state-of-the-art process designs on the order of 50¢/gal. Based on the data available, the value of cellulase production bythermocellum corresponds to 90% of this amount. However, each process path has a strategic obstacle to be overcome: high-level cellulase expression and secretion for Path 1, and high ethanol selectivity for Path 2. Ethanol tolerance is not seen as a primary factor in choosing between DMC and other ethanol process alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lynd, L. R., Cushman, J. H., Nichols, R.J., and Wyman, C.E. (1991),Science 251, 1318–1323.

    Article  CAS  Google Scholar 

  2. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C.E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.

    Google Scholar 

  3. Veldhuis, M. K., Christensen, L. M., and Fulmer, E. I. (1933),Ind. Eng. Chem. 28, 430.

    Article  Google Scholar 

  4. Gong, G.-S., Maun, M., and Tsao, G. T. (1981),Biotechnol. Lett. 3(2), 77–82.

    Article  CAS  Google Scholar 

  5. Christakopoulos, P., Macris, B. J., and Ketos, D. (1989),Enz. and Microbial Technol. 11, 236–239.

    Article  CAS  Google Scholar 

  6. Avgerinos, G.C: and Wang, D. I. C. (1980),Ann. Rep. Verm. Processes 4, 165–191.

    CAS  Google Scholar 

  7. Murray, W. D., Wemyss, K.B. and Kahn, A. W. (1983),Eur. J. Appl. Microbiol. Biotechnol. 18, 71–74.

    Article  CAS  Google Scholar 

  8. Ng, T. K., Weimer, P. J., and Zeikus, J. G. (1977),Arch. Microbiol. 114, 1–7.

    Article  CAS  Google Scholar 

  9. Wang, D. I. C, Cooney, L., Wang, S.-D., Gordon, J. and Wang, G. Y. (1978),Proceedings Second Annual Symposium on Fuels from Biomass, Shuster, W. W. ed., Rensselaer Polytechnic Institute, Troy, NY, pp. 537–570.

    Google Scholar 

  10. Shoemaker, S., Schweickart, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K., and Innis, M. (1983),Bio/Technol. 1, 691–696.

    Article  CAS  Google Scholar 

  11. Skipper, N., Sutherland, M., Davies, R. W., Kilburn, D., Miller, R. C, Warren, A., and Wong, R. (1985),Science 230, 958–960.

    Article  CAS  Google Scholar 

  12. Rogers, P. (1986),Advances in Applied Microbiology, vol. 31, Laskin, A. I. ed., Academic, New York, pp. 1–59.

    Google Scholar 

  13. Lynd, L. R. (1989),Advances in Biochemical Engineering/Biotechnology, vol. 38, Fiechter, A. ed., Springer-Verlag, New York, pp. 1–52.

    Google Scholar 

  14. Slapack, G. E., Russell, I., and Stewart, G. G. (1987),Thermophilic Bacteria and Thermotolerant Yeasts for Ethanol Production, CRC, Boca Raton, FL.

    Google Scholar 

  15. Wang, D. I. C, Avgerinos, G. C, Biocic, I., Fang, S. D., and Fang, H. Y. (1983),Philos. Trans. R. Soc. London B300, 323–333.

    Google Scholar 

  16. Wiegel, J. and Ljundahl, L. G. (1986),CRC Crit. Rev. Biotechnol. 3(1), 39–108.

    Google Scholar 

  17. Bisaría, V. S. and Mishra, S. (1989),CRC Crit. Rev. Biotechnol. 9(2), 61–103.

    Article  Google Scholar 

  18. Lynd, L. R., Ahn, H.-J., Anderson, G., Hill, P., Kersey, D. S., and Klapatch, T. (1991),Appl. Biochem. Biotechnol. 28/29, 549–570.

    Article  Google Scholar 

  19. Ahn, H.-J. (1991), M.S. Thesis, Dartmouth College, Hanover, NH.

    Google Scholar 

  20. Johnson, E. A., Sakajoh, M., Halliwell, G., Madia, A., and Demain, A. L. (1982),Appl. Env. Microbiol. 43, 1125–1132.

    CAS  Google Scholar 

  21. Lynd, L. R., Grethlein, H.E., and Wolkin, R. W. (1989),Appl Env. Microbiol 55, 3131–3139.

    CAS  Google Scholar 

  22. Lynd, L. R. and Grethlein, H. E. (1987),Biotechnol. Bioeng. 29, 92–100.

    Article  CAS  Google Scholar 

  23. Wright, J. D. (1988),Energy Prog. 8(2), 71–78.

    Google Scholar 

  24. Wright, J. D. (1988),Chem. Eng. Prog. 84(8), 62–74.

    Google Scholar 

  25. Grethlein, H.E., Allen, D. C, and Converse, A. O. (1984),Biotechnol. Bioeng. 26, 1498–1505.

    Article  CAS  Google Scholar 

  26. Beguin, P. (1990),Annu. Rev. Microbiol. 44, 219–248.

    Article  CAS  Google Scholar 

  27. Penttila, M. E., Lehtovaara, P., Bailey, M., Teeri, T. T., and Knowles, J. (1988),Gene 63, 103–112.

    Article  CAS  Google Scholar 

  28. Zurbriggen, B.,Bailey, M. J., Penttila, M. E., Poutanen, and Linko, M., (1990),J. Biotechnol. 13, 267–278.

    Article  CAS  Google Scholar 

  29. Brestic-Goachet, N., Gunasekaran, P., Carni, B., and Baratti, J.-C. (1989),J. Gen. Microbiol. 135, 893–902.

    CAS  Google Scholar 

  30. Lejuene, A., Eveleigh, D. E., and Colson, C. (1988),FEMS Microbiol. Lett. 49, 363–366.

    Article  Google Scholar 

  31. Lamed, R. and Bayer, E. A. (1988),Adv. Appl. Microbiol. 33, 2–41.

    Google Scholar 

  32. Bernardez, T. D. (1990), Master of Engineering Thesis, Dartmouth College, Hanover, NH.

    Google Scholar 

  33. Stouthamer, A.H. (1979),Microbial Biochemistry, Vol. 21, Quayle, J. R. ed., University Park Press, Baltimore, pp. 1–47.

    Google Scholar 

  34. Ho, K. P. and Payne, W. J. (1979),Biotechnol. Bioeng. 21, 787–802.

    Article  CAS  Google Scholar 

  35. Thauer, R. K., Jungermann, K., and Decker, K. (1977),Bact. Rev. 41(1), 100.

    Google Scholar 

  36. Aiba, S., Shoda, M., and Nagatani, J. (1968),Biotechnol. Bioeng. 10, 845–864.

    Article  CAS  Google Scholar 

  37. Bazua, D. and Wilke, R. (1977),Biotechnol. Bioeng. Symp. 7, 105–118.

    CAS  Google Scholar 

  38. Ghose, T. K. and Tyagi, R. D. (1979),Biotechnol. Bioeng. 21, 1401–1420.

    Article  CAS  Google Scholar 

  39. Peringer, P., Blachere, H. Corrieu, G., and Lane, A. G. (1974),Biotechnol. Bioeng. 16, 431–454.

    Article  CAS  Google Scholar 

  40. Maiorella, B., Blanch, H. W., and Wilke, R. (1983),Biotechnol. Bioeng. 25, 103–121.

    Article  CAS  Google Scholar 

  41. Papoutsakis, E. T. (1984),Biotechnol. Bioeng. 26, 174–187.

    Article  CAS  Google Scholar 

  42. Erickson, L. E. (1980),Biotechnol. Bioeng. 22, 451–456.

    Article  CAS  Google Scholar 

  43. Holzberg, I., Finn, R. K., and Steinkraus, K. H. (1967),Biotechnol. Bioeng. 9, 413–427.

    Article  CAS  Google Scholar 

  44. Jobses, I. M. L. and Roels, J. A. (1986),Biotechnol. Bioeng. 28, 554–563.

    Article  CAS  Google Scholar 

  45. Herrero, A. A. and Gomez, R. F. (1980),Appl. Environ. Microbiol. 40(3), 571–577.

    Google Scholar 

  46. Lovitt, R. W., Longin, R., and Zeikus, J. G. (1984),Appl. Environ. Microbiol. 48(1), 171–177.

    Google Scholar 

  47. Fieschko, J. and Humphrey, A. E. (1983),Biotechnol. Bioeng. 25, 1655–1660.

    Article  CAS  Google Scholar 

  48. Huang, S.-Y., and Chen, J.-C. (1988),Enz. Microb. Technol. 20, 431–439.

    Article  Google Scholar 

  49. Sa-Correia, I. and Van Uden, N. (1983),Biotechnol. Bioeng. 25, 1665–1667.

    Article  CAS  Google Scholar 

  50. Van Uden, N. (1984),Adv. Microb. Physiol. 25, 195–251.

    Google Scholar 

  51. Van Uden, N. (1985),Annual Reports on Fermentation Processes 8, 11.

    Google Scholar 

  52. Nipkow, A., Sonnleitner, and Fiechter, A. (1986),J. Biotechnol. 4, 35–47.

    Article  CAS  Google Scholar 

  53. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982),Advances in Biochemical Engineering, vol. 23, Fiechter, A., ed., Springer-Verlag, New York, pp. 37–84.

    Google Scholar 

  54. Avgerinos, G. C. and Wang, D. I. (1983),Biotechnol. Bioeng. 25, 67–83.

    Article  CAS  Google Scholar 

  55. Carreira, L. H., Weigel, J., and Ljungdahl, L. G. (1983),Biotechnol. Bioeng. Symp. 13, 183–191.

    CAS  Google Scholar 

  56. Wang, D. I. and Dalal, R. (1986), Patent no. 4,568,644.

  57. Zeikus, J. G., Ben-Bassat, A., and Hegge, P. J. (1980),J. Bacteriol. 243, 432–444.

    Google Scholar 

  58. Hon-Nami, K., Coughlan, M. P., Hon-Nami, H., Carriera, L. H., and Ljungdahl, L. G. (1985),Biotechnol. Bioeng. Symp. 15, 191–205.

    Google Scholar 

  59. Lacis, L. S. and Lawford, H. G. (1988),Arch. Microbiol. 150, 48–55.

    Article  CAS  Google Scholar 

  60. Lacis, L. S. and Lawford, H. G. (1989),Biotechnol. Lett. 10(8), 603–608.

    Google Scholar 

  61. Mistry, F. and Cooney, L. (1989),Biotechnol. Bioeng. 34, 1295–1304.

    Article  CAS  Google Scholar 

  62. Slaff, G. F. and Humphrey, A. E. (1981),Presentation at the 182nd Meeting of the ACS.

  63. Ward, P. J. and Mutharasan, R. (1986),Presentation at the 192nd Meeting of the ACS.

  64. Lynd, L. R. (1990),Appl. Biochem. Microbiol. 24/25, 695–719.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogsett, D.A., Ahn, H.J., Bernardez, T.D. et al. Direct microbial conversion. Appl Biochem Biotechnol 34, 527–541 (1992). https://doi.org/10.1007/BF02920576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920576

Index Entries

Navigation