Skip to main content
Log in

Thermal denaturation ofTrichoderma reesei cellulases studied by differential scanning calorimetry and tryptophan fluorescence

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The thermal denaturation of four purified Trichoderma reesei cellulase components, cellobiohydrolase (CBH) I, CBH II, endoglucanase (EG) I, and EG II, has been monitored using a combination of classical temperature/activity profiles, differential scanning calorimetry (DSC), and thermal scanning fluorescence emission spectrometry. Significant correlations were found between the results of enzyme activity studies and the results obtained through the more direct physical approaches, in that both DSC and the activity studies showed EG II (Tm = 75°C) to be much more thermostable (by 10–11 °C) than the other three enzymes, all three of which were shown by both activity profiles and DSC to be very similar in thermal stability. The temperature dependence of the wavelength of maximum tryptophan emission showed a parallel result, with the three enzymes exhibiting less thermostable activity being grouped together in this regard, and EG II differing from the other three in maintaining a less-exposed tryptophan microenvironment at temperatures as high as 73 °C. The DSC results suggested that at least two transitions are involved in the unfolding of each of the cellulase components, the first (lower-temperature) of which may be the one correlated with activity loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shoemaker, S., Watt, K., Tsitovsky, G., and Cox, R. (1983a),Bio/Technology 1, 687–689.

    Article  CAS  Google Scholar 

  2. Saloheimo, M., Lehtovaara, P., Penttilä, M., Teeri, T. T., Ståhlberg, J., Johansson, G., Pettersson, G., Claeyssens, M., Tomme, P., and Knowles, J. (1988),Gene 63, 11–21.

    Article  CAS  Google Scholar 

  3. Shoemaker, S., Schweickart, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K., and Innis, M. (1983b),Bio/Technology 1, 691–696.

    Article  CAS  Google Scholar 

  4. Chen, C.-M, Gritzali, M., and Stafford, D. (1987),Bio/Technology 5, 274–278.

    Article  CAS  Google Scholar 

  5. Bhikhabhai, R. and Pettersson, G. (1984),Biochem. J. 222, 729–736.

    CAS  Google Scholar 

  6. Knowles, J., Lehtovaara, P., and Teeri, T. (1987),Trends Biotechnol. 5, 255–261.

    Article  CAS  Google Scholar 

  7. Teeri, T., Lehtovaara, P., Kauppinen, S., Salovuori, I., and Knowles, J. (1987),Gene 51, 43–52.

    Article  CAS  Google Scholar 

  8. Penttilä, M., Lehtovaara, P., Nevalainen, H., Bhikhabhai, R., and Knowles, J. (1986),Gene 45, 253–263.

    Article  Google Scholar 

  9. Tomme, P., Van Tilbeurgh, H., Pettersson, G., VanDamme, J., Vandekerckhove, J., Knowles, J., Teeri, T., and Claeyssens, M. (1988),Eur. J. Biochem. 170, 575–581.

    Article  CAS  Google Scholar 

  10. Ståhlberg, J., Johansson, G., and Pettersson, G. (1988),Eur. J. Biochem. 173, 179–183.

    Article  Google Scholar 

  11. Abuja, P. M., Schmuck, M., Tomme, P., Claeyssens, M., and Esterbauer, H. (1988),Eur. Biophys. J. 15, 339–342.

    Article  CAS  Google Scholar 

  12. Esterbauer, H., Hayn, M., Abuja, P. M., and Claeyssens, M. (1991,Enzymes in Biomass Conversion, Leatham, G. F. and Himmell, M. E., eds., American Chemical Society, Washington, DC, pp. 301–312.

    Google Scholar 

  13. Kraulis, P. J., Clore, M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J., and Gronenborn, A. M. (1989),Biochemistry 28, 7241–7257.

    Article  CAS  Google Scholar 

  14. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J. K. C., and Jones, T. A. (1990),Science 249, 380–386.

    Article  CAS  Google Scholar 

  15. Woodward, J., Lee, N. E., Carmichael, J. S., McNair, S. L., and Wichert, J. M. (1990)Biochim. Biophys. Acta 1037, 81–85.

    CAS  Google Scholar 

  16. Wood, T. M. and McCrae, S. I. (1979),Adv. Chem. Ser. 181, 181–209.

    Article  Google Scholar 

  17. Woodward, J., Hayes, M. K., and Lee, N. E. (1988a),Bio/Technology 6, 301–304.

    Article  CAS  Google Scholar 

  18. Woodward, J., Lima, M., and Lee, N. E. (1988b),Biochem. J. 255, 895–899.

    CAS  Google Scholar 

  19. Fägerstam, L. G. and Pettersson, L. G. (1980),FEBS Lett. 119, 97–100.

    Article  Google Scholar 

  20. Wood, T. M. and McCrae, S. I. (1986),Biochem. J. 234, 93–99.

    CAS  Google Scholar 

  21. Privalov, P. L. and Khechinashvili, N. N. (1974),J. Mol. Biol. 86, 665–684.

    Article  CAS  Google Scholar 

  22. Krishnan, K. S. and Brandts, J. F. (1979),Methods Enzymol. 61, 3–14.

    Article  Google Scholar 

  23. Donovan, J. W. and Ross, K. D. (1973),Biochemistry 12, 512–517.

    Article  CAS  Google Scholar 

  24. Grutter, M. G., Weaver, L. H., and Matthews, B. W. (1983),Nature 303, 828–831.

    Article  CAS  Google Scholar 

  25. Sturtevant, J. M. (1974),Annu. Rev. Biophys. Bioeng. 3, 33–51.

    Article  Google Scholar 

  26. Niedzwiadek, W. E., O’Bryan, G. T., Blumenstock, F. A., Saba, T. M., and Andersen, T. T. (1988),Biochemistry 27, 7116–7124.

    Article  CAS  Google Scholar 

  27. Biltonen, R. L. and Freire, E. (1978),CRC Crit. Rev. Biochem. 5, 85–124.

    CAS  Google Scholar 

  28. Jackson, M. B. and Sturtevant, J. M. (1978),Biochemistry 5, 911–915.

    Article  Google Scholar 

  29. Edge, V., Allewell, N. M., and Sturtevant, J. M. (1985),Biochemistry 24, 5899–5906.

    Article  CAS  Google Scholar 

  30. Manly, S. P., Matthews, K. S., and Sturtevant, J. M. (1985),Biochemistry 24, 3842–3846.

    Article  CAS  Google Scholar 

  31. Sanchez-Ruiz, J. M., Lopez-Lacomba, J. L., Cortijo, M., and Mateo, P. L. (1988),Biochemistry 27, 1648–1652.

    Article  CAS  Google Scholar 

  32. Baker, J. O., Mitchell, D. J., Grohmann, K., and Himmel, M. E. (1991),Enzymes in Biomass Conversion, Leatham, G. F. and Himmel, M. E., eds., American Chemical Society, Washington, DC, pp. 313–330.

    Google Scholar 

  33. Lakowicz, J. R. (1983),Principles of Fluorescence Spectroscopy, Plenum, New York.

    Google Scholar 

  34. Hug, D. H., and O’Donnel, P. S. (1985),Biochim. Biophys. Acta 830, 101–104.

    CAS  Google Scholar 

  35. Maiti, L., Kono, M., and Chakrabarti, B. (1988),FEBS Lett. 236, 109–114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, J.O., Tatsumoto, K., Grohmann, K. et al. Thermal denaturation ofTrichoderma reesei cellulases studied by differential scanning calorimetry and tryptophan fluorescence. Appl Biochem Biotechnol 34, 217–231 (1992). https://doi.org/10.1007/BF02920547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920547

Index Entries

Navigation