Skip to main content
Log in

Mechanisms of arsenic-induced cell transformation

  • Section 6 Mechanisms of Carcinogenesis
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic is a well-established carcinogen in humans, but there is little evidence for its carcinogenicity in animals and it is inactive as an initiator or tumor promoter in two-stage models of carcinogenicity in mice. Studies with cells in culture have provided some possible mechanisms by which arsenic and arsenical compounds may exert a carcinogenic activity. Sodium arsenite and sodium arsenate were observed to induce morphological transformation of Syrian hamster embryo cells in a dose-dependent manner. The trivalent sodium arsenite was greater than tenfold more potent than the pentavalent sodium arsenate. The compounds also exhibited toxicity; however, transformation was observed at nontoxic as well as toxic doses. At low doses, enhanced colony forming efficiency of the cells was observed. To understand the mechanism of arsenic-induced transformation, the genetic effects of the two arsenicals were examined over the same doses that induced transformation. No arsenic-induced gene mutations were detected at two genetic loci. However, cell transformation and cytogenetic effects, including endoreduplication, chromosome aberrations, and sister chromatid exchanges, were induced by the arsenicals with similar dose responses. These results support a possible role for chromosomal changes in arsenic-induced transformation. The two arsenic salts also induced another form of mutation-gene amplification. Both sodium arsenite and sodium arsenate induced a high frequency of methotrexate-resistant 3T6 cells, which were shown to have amplified copies of the dihydrofolate reductase gene. The ability of arsenic to induce gene amplification may relate to its carcinogenic effects in humans since amplification of oncogenes is observed in many human tumors. Epidemiological studies suggest that arsenic acts late in the carcinogenic process in humans and oncogene amplification correlates with the progression of tumors. These observations lead us to propose the hypothesis that arsenic acts as a tumor progressor, rather than a tumor initiator or tumor promoter. Arsenic-induced chromosome aberrations or gene amplifications may play a role in tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IARC Monograph on Evaluation of Carcinogenic Risk to Humans 23, 1980, p. 37.

  2. IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Humans Suppl. 4, 1982, p. 50.

  3. A. Leonard and R. R. Lauwerys,Mutat. Res. 75, 49 (1980).

    PubMed  CAS  Google Scholar 

  4. N. Ishinishi, A. Yamamoto, A. Hisanga, and T. Inamasu,Cancer Lett. 21, 141 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. P. Rudnay and M. Borzsonyi,Magyar Onkologia 25, 73 (1981).

    Google Scholar 

  6. G. Pershagen, G. Nordberg, and N. Bjorklund,Environ. Res. 34, 227 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. J. A. DiPaolo and B. C. Casto,Cancer Res. 30, 1008 (1979).

    Google Scholar 

  8. T. C. Lee, M. Oshimura, and J. C. Barrett,Carcinogenesis 6, 1421, (1985). figures © AAAS.

    Article  PubMed  CAS  Google Scholar 

  9. T. C. Lee, N. Tanaka, P. W. Lamb, T. M. Gilmer, and J. C. Barrett,Science 241, 79–81 (1988), figures © AAAS.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang, Q. and J. C. Barrett,Toxic. in Vitro. Toxic. in Vitro. 2: 303 (1988).

    Google Scholar 

  11. S. A. Lerman, T. W. Clarkson, and R. J. Gerson,Chem. Biol. Interactions 45, 401 (1983).

    Article  CAS  Google Scholar 

  12. M. Vahter and E. Marafante,Chem. Biol. Interactions 47, 29 (1983).

    Article  CAS  Google Scholar 

  13. T. G. Rossman, D. Stone, M. Molina, and W. Troll,Environ. Mut. 2, 371 (1980).

    Article  CAS  Google Scholar 

  14. L. L. Deaven and A. E. Nock,J. Cell. Biol. 83, 159a (1979).

    Article  Google Scholar 

  15. J. Petres, D. Baron, and M. Hagedon,Environ. Hlth. Perspect. 19, 223 (1977).

    Article  CAS  Google Scholar 

  16. M. L. Larramendy, N. C. Popescu, and J. A. DiPaolo,Environ. Mut. 3, 597 (1981).

    Article  CAS  Google Scholar 

  17. K. Nakamuro and Y. Sayato,Mutat. Res. 88, 73 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. G. R. Paton and A. C. Allison,Mutat. Res. 16, 332 (1972).

    PubMed  CAS  Google Scholar 

  19. B. Wan, R. T. Christian, and S. W. Soukup,Environ. Mut. 4, 493 (1982).

    Article  CAS  Google Scholar 

  20. T. D. Tlsty, P. C. Brown and R. T. Schimke,Mol. Cell Biol. 4, 1050 (1984).

    PubMed  CAS  Google Scholar 

  21. P. C. Brown, T. D. Tlsty, and R. T. Schimke,Mol. Cell Biol. 3, 1097 (1983).

    PubMed  CAS  Google Scholar 

  22. R. T. Schimke,Cell 37, 705 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. A. B. Hill and R. T. Schimke,Cancer Res. 45, 5050 (1985).

    PubMed  CAS  Google Scholar 

  24. A. Varshavsky,Proc. Natl. Acad. Sci. 78, 3673 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. R. K. Boutwell,J. Agric. Food Chem. 11, 381 (1963).

    Article  CAS  Google Scholar 

  26. C. Baroni, G. J. van Esch, and V. Saffiotti,Arch. Environ. Health 7, 668 (1963).

    PubMed  CAS  Google Scholar 

  27. C. C. Brown and K. Chu,J. Natl. Cancer Inst. 70, 455 (1983).

    PubMed  CAS  Google Scholar 

  28. D. L. George,Cancer Surveys 3, 497 (1984).

    Google Scholar 

  29. M. Schwab et al.,Proc. Natl. Acad. Sci. 81, 4940 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. G. M. Brodeur, R. C. Seeger, M. Schwab, H. E. Varmus, and J. M. Bishop,Science 224, 1121 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. J. C. Barrett,Carcinogenesis, vol. 8, M. J. Mass et al., eds., Raven, NY, 1985, p. 423.

    Google Scholar 

  32. H. Hennings et al.,Nature 304, 67 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. J. F. O’Connell, A. J. P. Klein-Szanto, D. M. DiGiovanni, J. W. Fries, and T. J. Slaga,Cancer Res. 46, 2863 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, J.C., Lamb, P.W., Wang, T.C. et al. Mechanisms of arsenic-induced cell transformation. Biol Trace Elem Res 21, 421–429 (1989). https://doi.org/10.1007/BF02917284

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02917284

Index Entries

Navigation