Skip to main content
Log in

Methodologies for predicting fatigue life

  • Fatigue Behavior
  • Tutorial
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article reviews the basic techniques employed in fatigue life prediction. The stress-life, local-strain, and fracture-mechanics methods as applied to life prediction under constant amplitude loading and variable amplitude loading are discussed. Life prediction methodology under variable maplitude loading is also discussed, with particular emphasis on the linear-damage accumulation approach, or Miner's rule. Finally, a discussion of various cycle-counting techniques for variable amplitude loading is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh,Fatigue of Materials, (New York: Cambridge University Press, 1991).

    Google Scholar 

  2. N.E. Dowling,J. of Materials (3) (1972), pp. 71–82.

    Google Scholar 

  3. N.E. Dowling,Mechanical Behavior of Materials, Englewood Cliffs, Prentice Hall, 1993).

    Google Scholar 

  4. C.C. Osgood,Fatigue Design, 2nd ed, New York: Pergamon Press, 1982).

    Google Scholar 

  5. G.E. Dieter,Mechanical Metallurgy, 3rd ed., New York: McGraw-Hill, 1986).

    Google Scholar 

  6. H. Neuber,J. of App. Mech., 28 (1961), pp. 544–550.

    Google Scholar 

  7. J.H. Crews,Effects of Loading Sequence for Notched Specimens Under High-Low Two-Step Fatigue Loading, NASA TN D-6558 (November 1971).

  8. V. Kliman, P. Füleky, and J. Jelemenski,Advances in Fatigue Lifetime Predictive Techniques, ASTM-STP 1292, 3rd vol., eds. M.R. Mitchell and R.W. Landgraf, Philadelphia, PA: ASTM, 1996), pp. 305–327.

    Google Scholar 

  9. S.M. Tipton and D.A. Newburn,Advances in Fatigue Lifetime Predictive Techniques ASTMSTP 1122, eds. M.R. Mitchell and R.W. Landgraf, (Philadelphia, PA: ASTM, 1992), pp. 369–382.

    Google Scholar 

  10. M. Vormwald, P. Heuler, and T. Seeger, in Ref., pp. 28–43.

    Google Scholar 

  11. P.C. Paris and F. Erdogan,Trans. of the ASME J. of Basic Engrg. 89 (1967), pp. 528–534.

    Google Scholar 

  12. R. Sunder, in Ref. 9, pp. 161–175.

    Google Scholar 

  13. A.T. Chang et al.Advances in Fatigue Lifetime Predictive Techniques, ASTMSTP 1292, 3rd vol. eds. M.R. Mitchell and R.W. Landgraf (Philadelphia, PA: ASTM, 1996), pp. 100–115.

    Google Scholar 

  14. J.C. Newman et al., in Ref. 9, pp. 5–27.

    Google Scholar 

  15. D. Broek,The Practical Use of Fracture Mechanics (Boston: Kluwer Academic Publishing, 1989).

    Google Scholar 

  16. P.K. Liaw et al.,Acta Met., 30 (1982), pp. 2071–2078.

    Article  CAS  Google Scholar 

  17. P.K. Liaw, T.R. Leax and W.A. Logsdon,Acta Met., 31 (1983), pp. 1581–1587.

    Article  CAS  Google Scholar 

  18. P.K. Liaw,Acta Met., (1985), p. 33.

  19. P.K. Liaw, T.R. Leax and J.K. Logsdon,Acta Met., 31 (1983), pp. 1581–1587.

    Article  CAS  Google Scholar 

  20. J. McKittrick,Met. Trans., 12A (1981), p. 1535.

    Google Scholar 

  21. S. Suresh and P.O. Ritchie:Met. Trans., 13A (1982), p. 1627.

    Google Scholar 

  22. N. Minakawa and A.J. McEvily,Scripta Metallurgica, 15 (1981), p. 633.

    Article  Google Scholar 

  23. D.L. Davidson,Fatigue of Engineering Materials and Structures, 3 (1980), p. 229.

    Article  Google Scholar 

  24. C.M. Hudson and P.E. Lewis,Part-Through Crack Fatigue Life Prediction, ASTM ASP 687, ed. J.B. Chang, Philadelphia, PA: ASTM, 1979), pp. 113–128.

    Google Scholar 

  25. D. BroekElementary Engineering Fracture Mechanics, Boston, MA: Martinus Nijhoff Publishers, 1982).

    Google Scholar 

  26. S. Shanmugham and P.K. Liaw:ASM Handbook, Fatigue and Fracture, vol. 19, Materials Park, OH: ASM, 1996), pp. 210–223.

    Google Scholar 

  27. N.E. Dowling and J.A. Begley,Mechanisms of Crack Growth ASTM STP 590 (Philadelphia: ASTM, 1976).

    Google Scholar 

  28. ASTM Standard E 647,1995 ASTM Standards, 03.01.

  29. F. Xiangjiong,Engineering Fracture Mechanics, 34 (5–6) (1989), pp. 1241–1248.

    Google Scholar 

  30. M.A. Miner,Trans. of the ASME, 67 (1945).

  31. H.A. Lipsitt, D.F. Frank, and G.C. Smith,Proceedings of the Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials, AFFDI, TR 70-144, eds. H.A. Wood, et al. Washington, D.C. USAF, December 1969).

    Google Scholar 

  32. S.S. Manson, J.C. Freche, and C.R. Ensign,Application of a Double Linear Damage Rule to Cumulative Fatigue. NASA TN D-3839 (April 1967).

  33. H. Alawi,Trans. of the ASME, Journal of Engineering Materials and Technology, 111 (4) (October 1989) pp. 338–344.

    Article  CAS  Google Scholar 

  34. ASTM Standard E 1049,1995 ASTM Standards, 03.01.

  35. M. Kato et al,Scripta Metallurgica, (1984), p. 18.

  36. M. Kato and T. Mori,Mechanics of Materials, 13 (2) (March 1992), pp. 155–163.

    Article  Google Scholar 

  37. S.E. Harvey, P.G. Marsh, and W.W. Gerberich,Acta Met. et Mat., 42 (10) (1994), pp. 3493–3502.

    Article  CAS  Google Scholar 

  38. M.-R. Lin, M.E. Fine, and T. Mura,Acta Met., 34(4) (1986).

Download references

Authors

Additional information

R.K. Holman earned his B.S. in materials science and engineering at the University of Tennessee-Knoxville in 1996. He is entering graduate school this fall at the Massachusetts Institute of Technology. Mr. Holman is member of TMS.

P.K. Liaw earned his Ph.D. in materials science and engineering at Northwestern Univeristy in 1980. He is currently a professor and Ivan Racheff Chair of Excellence in the Department of Materials Science and Engineering at the University of Tennessee. Dr. Liaw is also a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holman, R.K., Liaw, P.K. Methodologies for predicting fatigue life. JOM 49, 46–52 (1997). https://doi.org/10.1007/BF02914767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914767

Keywords

Navigation