Skip to main content
Log in

Transition metal carbides, nitrides, and borides for electronic applications

  • Conductive Materials
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Compounds of transition metals from Groups IV and V with carbon, nitrogen, or boron (e.g., NbC, TiN, and ZrB2) are electronically conductive but are also very hard and have high melting points. These materials resist electromigration and prevent diffusion because their strong interatomic bonding makes the activation energy for diffusion very high. Carbides and nitrides form the NaCl crystal structure, but are nonstoichiometric with nonmetal atom vacancies that scatter electrons. This defect-controlled resistivity can be eliminated with an order-disorder transformation at a specific nonmetal/metal ratio. The diborides are essentially sentially stoichiometric and have low resistivities. These metallic ceramics can be deposited as thin films to form interconnects and diffusion barriers in ultralarge-scale integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Schwartzkopf and R. Kieffer,Refractory Hard Metals (New York: Macmillan Publishing Co., 1953).

    Google Scholar 

  2. G.V. Samsonov,Refractory Transition Metal Compounds (New York: Academic Press, 1964).

    Google Scholar 

  3. E.K. Storm,The Refractory Carbides (New York: Academic Press, 1967).

    Google Scholar 

  4. W.S. Williams,Progress in Solid State Chemistry 6, ed. H. Reiss and J.O. McCaldin (New York: Pergamon Press, 1971), pp. 57–118.

    Google Scholar 

  5. L.E. Toth,Transition-Metal Carbides and Nitrides (New York: Academic Press, 1971).

    Google Scholar 

  6. K. Schwarz,CRC Critical Reviews in Solid State and Materials Sciences, 13 (1987), pp. 221–257.

    Google Scholar 

  7. R. Freer, ed.,The Physics and Chemistry of Carbides, Nitrides, and Borides NATO ASI Series E, vol. 185 (Dordrect: Kluwer Academic Publishers, 1990).

    Google Scholar 

  8. A.I. Gusev,Phys. Stat. Sol. B, 163 (1991), pp. 17–54.

    Article  CAS  Google Scholar 

  9. V.A. Gubanov, A.L. Ivanovsky, and V.P. Zhokov,Electronic Structure of Refractory Carbides and Nitrides (Cambridge University Press, 1994).

  10. F.W. Clinard, Jr., and C.P. Kempter,J. Less-Common Metals 15, 59 (1968).

    Article  CAS  Google Scholar 

  11. L. Hollander, Jr.,J. Appl. Phys., 32, 996 (1961).

    Article  CAS  Google Scholar 

  12. J. Piper,Nuclear Metallurgy Symp., 10 (New York: Met. Soc. of AIME, 1962).

    Google Scholar 

  13. W.S. Williams,Phys. Rev., 135, (A505) (1962).

  14. J.-F. Lei, H. Okimna, and J.O. Brittain,Mat. Sci. And Eng., A123, (1990), pp. 129–140.

    Article  Google Scholar 

  15. J.R. Cooper and RL. Hansler,J. Chem. Phys., 39 (1963), p. 248.

    Article  CAS  Google Scholar 

  16. G. Santoro and R.T. Dolloff,J. Appl. Phys., 39 (1968), p. 2293.

    Article  Google Scholar 

  17. W.S. Williams,Materials Research Society Symposium Proceedings, 411—Electrically Based Microstructural Characterization, ed. R.A. Gerhardt, S.R. Taylor, and E.J. Garboczi (Pittsburgh, PA, MRS, 1996), pp. 169–176.

    Google Scholar 

  18. J. Venables, P. Kahn, and R. Lye,Phil. Mag., 18 (1968), p. 177.

    Article  CAS  Google Scholar 

  19. C. de Novion, P. Lorenzelli and P. Costa,Compt. Rend., 263 (1966), p. 775.

    Google Scholar 

  20. L.W. Shacklette and W.S. Williams,J. Appl. Phys., 42 (1971), pp. 4698–4703.

    Article  CAS  Google Scholar 

  21. L.W. Shacklette and W.S. Williams,Phys. Rev., B7 (1973), pp. 5041–5053.

    CAS  Google Scholar 

  22. L.C. Dy and W.S. Williams,J. Appl. Phys., 53 (1982), pp. 8915–8927.

    Article  CAS  Google Scholar 

  23. G.H. Emmons and W.S. Williams,J. Mat. Sci., 18 (1983), pp. 2589–2602.

    Article  CAS  Google Scholar 

  24. V.S. Nesphor et al.,Inorganic Materials, 2 (1966), p. 865.

    Google Scholar 

  25. F.A. Modine et al.,Phys. Rev., B40 (1989), pp. 9558–9564.

    CAS  Google Scholar 

  26. B. Chakraborty and P.B. Allen,Phys. Rev. Lett., 42 (1979), pp. 736–738.

    Article  CAS  Google Scholar 

  27. L.W. Shacklette, L.G. Radosevich, and W.S. Williams,Phys. Rev., B4 (1971), p. 84.

    Article  Google Scholar 

  28. M. Tsuchida et al.,Jpn. J. Appl. Phys., 32 (1993), pp. 1227–1228.

    Article  CAS  Google Scholar 

  29. J.E. Sundgren,Thin Solid Films, 128 (1985), pp. 21–44.

    Article  CAS  Google Scholar 

  30. C. Goldberg et al.,Conf: Proc. of ULSI Symposium 1995, (Pittsburgh, PA: MRS, 1996), pp. 247–257.

    Google Scholar 

  31. N. Yokoyama, K. Hinode, and Y. Homma,J. Electrochem. Soc., 138 (1991), pp. 190–195.

    Article  CAS  Google Scholar 

  32. O.A. Gohkova et al.,Soviet Physics—Solid State, 7 (1966), p. 2317.

    Google Scholar 

  33. D. Kohlstedt and W.S. Williams,Phys. Rev., B3 (1971), p. 293.

    Google Scholar 

  34. L.W. Shacklette and H.A. Ashworth,Phys. Rev., B12 (1975) pp. 1146–1153.

    Article  CAS  Google Scholar 

  35. G.L. Pearson and J. Bardeen,Phys. Rev., 75 (1949), p. 865

    Article  CAS  Google Scholar 

  36. V. Ern and A.C. Swittendrick,Phys. Rev., 137 (1965), p. 1927.

    Article  CAS  Google Scholar 

  37. A. Necket et al.,J. Phys. C, 9 (1976), p. 579.

    Article  Google Scholar 

  38. L. Ramqvist et al.,J. Phys. Chem. Solids., 30 (1969), p. 1835.

    Article  CAS  Google Scholar 

  39. H.J. Juretschke and R. Steinitz,J. Phys. Chem. Solids, 4 (1958), pp. 118–127.

    Article  CAS  Google Scholar 

  40. R.T. Dolloff and W.S. Williams,Bull. Am. Phys. Soc. Ser. II, 4 (1959).

  41. R.K. Williams, R.S. Graves, and F.J. Weaver,J. Appl. Phys., 59 (1986), pp. 1552–1556.

    Article  CAS  Google Scholar 

  42. M.V. Frandsen, Ph.D. thesis, University of Illinois at Urbana-Champaign (1997).

  43. M. Rahman et al.,J Am. Ceram. Soc., 78 (1995), pp. 1380–1382.

    Article  CAS  Google Scholar 

  44. H. Ihara,Researches of the Electrochemical Laboratory (Japan), 725 (1977).

  45. Y. Ishizawa and T. Tanaka,Inst. Inst. Phys. Conf. Ser. No. 75, Ch. 1 (Adam Hilger Ltd, 1986), pp. 29–43.

  46. C.S. Choi et al.,J. Appol. Phys., 69 (1991), pp. 7853–7861.

    Article  CAS  Google Scholar 

  47. K. Bachman and W.S. Williams,J. Appl. Phys., 42 (1971), pp. 4407–4407.

    Google Scholar 

  48. S. Sarian,J. Appl. Phys., 39 (1968), p. 3305.

    Article  CAS  Google Scholar 

  49. S. Sarian,J. Appl. Phys., 40 (1969), p. 3515.

    Article  CAS  Google Scholar 

  50. J.W. Morris, Jr., C.-U. Kim, and S.H. Kang,JOM, 48 (4) (1996), pp. 43–46.

    CAS  Google Scholar 

  51. C. Emsberger et al.,J. Vac. Sci. Technol., A4 (1986), pp. 2784–2788.

    Article  Google Scholar 

  52. E.J. Cukauskas and W.L. Carter,IEEE Trans. on Magnetics 25, #2 (1989), pp. 1235–1238.

    Article  CAS  Google Scholar 

  53. M. Aoyagi et al.,Jpn. J. Appl. Phys., 31 (1992), pp. 1778–1783.

    Article  CAS  Google Scholar 

  54. P. Mochel, C. Allison, and W.S. Williams,J. Am. Ceram. Soc., 64 (1981), pp. 185–187.

    Article  CAS  Google Scholar 

Download references

Authors

Additional information

Wendell S. Williams earned his Ph.D. in physics at Cornell University in 1956. He was a research physicist with Union Carbide Corporation, a professor of physics and engineering at the University of Illinois, and department chair of materials science and engineering at Case Western Reserve University. Dr. Williams, now retired, is a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, W.S. Transition metal carbides, nitrides, and borides for electronic applications. JOM 49, 38–42 (1997). https://doi.org/10.1007/BF02914655

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914655

Keywords

Navigation