Skip to main content
Log in

The Leydig cell of the human testis —A new member of the diffuse neuroendocrine system

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A number of marker substances for neuronal and neuroendocrine cells have been demonstrated in the cytoplasm of the interstitial Leydig cells of human testes using basic immunocytochemical methods and some of their modifications. We were able to reveal immunoreactivity for enzymes involved in the synthesis of the catecholamines dopamine and noradrenaline (tryosine hydroxylase, aromatic L-amino acid decarboxylase, dopamine-β-hydroxylase), for the indolamine 5-hydroxytryptamine (serotonin), as well as for a number of wellknown neuronal markers such as the neurofilament protein 200, synaptophysin, chromogranin A+B, the neural cell-adhesion molecule (N-CAM), the microtubule-associated protein (MAP-2), and the calcium-binding proteins: S-100, calbindin and parvalbumin. Immunoreactivity for these substances was found in the majority of the interstitial cells although differences in the staining intensity among the individual Leydig cells and among Leydig cells from different patients were observed. At the electron-microscopic level the Leydig cell cytoplasm was seen to contain microtubules, intermediate- and microfilaments as well as clear (40–60 nm) and dense-core (100–300 nm) vesicles, providing a morphological correlate for some of the immunocytochemical results. Although individual marker substances are not absolutely specific for nerve and neuroendocrine cells, the results obtained, together with the already established neuronspecific enolase-, substance P-, methionine-enkephalinand proopiomelanocortin (POMC)-derived peptide-like immunoreactivity, provide strong evidence for the neuroendocrine (paraneuronal, APUD-like) nature of the Leydig cells of the human testis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelova PA, Davidoff MS, Kanchev LN (1991a) Substance P inhibits testosterone secretion of isolated Leydig cells. Andrologia 23:325–327

    PubMed  CAS  Google Scholar 

  • Angelova P, Davidoff M, Baleva K, Staykova M (1991b) Substance P and neuron-specific enolase-like immunoreactivity of rodent Leydig cells in tissue section and cell culture. Acta Histochem 91:131–139

    PubMed  CAS  Google Scholar 

  • Bardin CW, Chen C-LC, Morris PL, Gerendai I, Boitani C, Liotta AS, Margioris A, Krieger DT (1987) Proopiomelanocortin-derived peptides in testis, ovary, and tissues of reproduction. Rec Progr Horm Res 43:1–28

    PubMed  CAS  Google Scholar 

  • Bardin CW, Morris PL, Chen CLC (1990) Autocrine and paracrine gonadal peptides. In: Bouchard P, Haour F, Franchimont P, Schatz B (eds) Recent Progress on GnRH and Gonadal Peptides. Elsevier, Paris, pp 367–382

    Google Scholar 

  • Benahmed M, Esposito G, Sordoillet C, Peretti E de, Chauvin MA, Ghiglieri C, Revol A, Morera AM (1989) Transforming growth factor β and its peptides in the testis: an intragonadal polypeptide control system. In: Serio M (ed) Serono Symposia Publications, vol 53, Perspectives in Andrology. Raven Press, pp 191–201

  • Bergh A, Cajander S (1990) Immunohistochemical localization of inhibin-α in the testes of normal men and in men with testicular disorders. Int J Androl 13:463–469

    Article  PubMed  CAS  Google Scholar 

  • Braun K (1990) Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. Progr Histochem Cytochem 21:1–64

    CAS  Google Scholar 

  • Browne ES, Flasch MV, Sohal GS, Bhalla VK (1990) Gonadotropin receptor occupancy and stimulation of cAMP and testosterone production by purified Leydig cells: critical dependence on cell concentration. Mol Cell Endocrinol 70:49–63

    Article  PubMed  CAS  Google Scholar 

  • Cecio A, Vittoria A (1989) Urogenital paraneurons in several mammals. Arch Histol Cytol 52 [Suppl]:403–413

    Article  PubMed  Google Scholar 

  • Celio MR (1990) Calbindin D-28K and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  PubMed  CAS  Google Scholar 

  • Chiwakata C, Brackmann B, Hunt N, Davidoff MS, Schulze W, Ivell R (1991) Tachykinin (substance P) gene expression in Leydig cells of the human and mouse testis. Endocrinology 128:2441–2448

    PubMed  CAS  Google Scholar 

  • Culler MD (1990) Role of Leydig cells and endogenous inhibin in regulating pulsatile gonadotropin secretion in the adult male rat. Endocrinology 127:2540–2550

    PubMed  CAS  Google Scholar 

  • Davidoff MS, Schulze W (1990) Combination of the peroxidase anti-peroxidase (PAP)- and avidin-biotin-peroxidase complex (ABC)-techniques: an amplification alternative in immunocytochemical staining. Histochemistry 93:531–536

    Article  PubMed  CAS  Google Scholar 

  • Davidoff MS, Breucker H, Holstein AF, Seidl K (1990) Cellular architecture of the lamina propria of human seminiferous tubules. Cell Tissue Res 262:253–261

    Article  PubMed  CAS  Google Scholar 

  • De Kretser DM (1987) Local regulation of testicular function. Int Rev Cytol 109:89–112

    PubMed  Google Scholar 

  • Deschepper CF, Mellon SH, Cumin F, Baxter JD (1986) Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc Natl Acad Sci USA 83:7552–7556

    Article  PubMed  CAS  Google Scholar 

  • Dráberová E, Dráber P, Viklicky V (1986) Cellular distribution of protein related to neuronal microtubule-associated protein MAP-2 in Leydig cells. Cell Biol Int Rep 10:881–890

    Article  PubMed  Google Scholar 

  • Eik-Nes KB (1975) Biosynthesis and secretion of testicular steroids. In: Greep RO, Astwood EB, Hamilton DW, Geiger S (eds) Handbook of Physiology. American Physiol Soc, Washington DC, pp 95–115

    Google Scholar 

  • Eskeland NL, Molineaux CJ, Schachter BS (1992) Regulation of β-endorphin secretion by corticotropin-releasing factor in the intact rat testis. Endocrinology 130:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Fabbri A, Knox G, Buczko E, Dufau ML (1988) β-Endorphin production by the fetal Leydig cell: regulation and implications for paracrine control of Sertoli cell function. Endocrinology 122:749–755

    PubMed  CAS  Google Scholar 

  • Fujita T (1989) Present status of paraneuron concept. Arch Histol Cytol 52 [Suppl]:1–8

    Article  PubMed  Google Scholar 

  • Gerendai I, Saha C, Thau R, Bardin CW (1984) Do testicular opiates regulate Leydig cell function? Endocrinology 115:1645–1647

    PubMed  CAS  Google Scholar 

  • Gobbi H, Barbosa AJA, Teixeira VPA, Almeida HO (1991) Immunocytochemical identification of neuroendocrine markers in human cardiac paraganglion-like structures. Histochemistry 95:337–340

    Article  PubMed  CAS  Google Scholar 

  • Gonzales-Manchon C, Vale W (1989) Activin-A, inhibin and transforming growth factor-β modulate growth of two gonadal cell lines. Endocrinology 125:1666–1672

    Google Scholar 

  • Griswold MD (1988) Protein secretions of Sertoli cells. Int Rev Cytol 110:133–156

    PubMed  CAS  Google Scholar 

  • Gu J, Polak JM, Probert L, Islam KN, Marangos PJ, Mina S, Adrian TE, McGregor GP, O'Shaughnassy, Bloom S (1983) Peptidergic innervation of the human male genital tract. J Urol 130:386–391

    PubMed  CAS  Google Scholar 

  • Guessi L, Isidort A, Bolotti M, Altamura S, Ulisse S, Jannini EA, Fabbri A, Spera G (1989) Identification of immunoreactive gastrin-releasing peptide-related substances in adult rat Leydig cells. Endocrinology 124:558–560

    Google Scholar 

  • Hasegawa H, Kobayashi T, Inoue F, Ichiama A (1989) Intracellular metabolism of biogenic amines in paraneurons. Arch Histol Cytol 52 [Suppl]:69–74

    Article  PubMed  Google Scholar 

  • Holgate CS, Jackson PS, Cowen PN, Bird CC (1983) Immunogold-silver staining: a new method of immunostaining with enhanced sensitivity. J Histochem Cytochem 31:939–944

    Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  • Ivell R (1992) “All that glisters is not gold”—common testis gene transcripts are not always what they seem. Int J Androl 15:85–92

    Article  PubMed  CAS  Google Scholar 

  • Ivell R, Furuya K, Nollmeyer D, Ungefroren H, Chiwakata C (1990) The expression of neuropeptide genes in the mammalian testis. In: Isidori A, Fabbri A, Dufau ML (eds). Hormonal Communicating in the Testis, vol 70. Raven Press, pp 45–55

  • Iwanaga T, Takahashi Y, Fujita T (1989) Immunohistochemistry of neuron-specific and glia-specific proteins. Arch Histol Cytol 52 [Suppl]:pp 13–24

    Article  PubMed  Google Scholar 

  • Kägi U, Chafouleas JG, Norman AW, Heizmann CW (1988) Developmental appearance of the Ca-binding proteins parvalbumin, calbindin D-28K, S 100 protein and calmodulin during testicular development in the rat. Cell Tissue Res 353:359–365

    Google Scholar 

  • Khanum A, Dufau ML (1988) Angiotensin II receptors and inhibitory actions in Leydig cells. J Biol Chem 263:5070–5074

    PubMed  CAS  Google Scholar 

  • Komori K, Fujii T, Karasawa N, Yamada K, Nagatsu I (1991) Some neurons of the mouse cortex and caudo-putamen contain aromatic L-amino acid decarboxylase but not monoamines. Acta Histochem Cytochem 24:571–578

    CAS  Google Scholar 

  • Lacaze-Masmonteil T, De Keyzer Y, Luton JP, Kahn A, Bertagna X (1987) Characterization of proopiomelanocortin transcripts in human nonpituitary tissues. Proc Natl Acad Sci USA 84:7261–7265

    Article  PubMed  CAS  Google Scholar 

  • Langley K, Gratzl M (1991) Neural cell adhesion molecule NCAM in neural and endocrine cells. In: Gratzl M and Langley K (eds) Markers for Neural and Endocrine Cells. Molecular and Cell Biology, Diagnostic Applications. Verlag Chemie, Weinheim New York Basel, pp 133–178

    Google Scholar 

  • Lauke H, Behrens K, Holstein AF (1989) Leydig cell mitoses in human testes bearing early germ cell tumors. Cell Tissue Res 255:475–479

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer A, Bartke A, Steger RW (1989) Catecholamine effects on testicular testosterone production in the gonadally active and the gonadally regressed adult golden hamster. Biol Reprod 40:752–761

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer A, Calandra RS, Bartke A (1991) Cyclic adenosine monophosphate (cAMP) does not mediate the stimulatory action of norepinephrine on testosterone production by testis of the golden hamster. Life Sci 48:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer A, Seidl K, Lahr G, Gratzl M (1992) Expression of the neural cell adhesion molecules (NCAMs) in the testis. Verh Anat Ges, Anat Anz [Suppl] 174:50

    Google Scholar 

  • Melner MH (1986) My favorite cell. Testicular Leydig cells: differentiated cells responding to multiple hormonal control and producing varied products. Bioessays 5:228–231

    Article  PubMed  CAS  Google Scholar 

  • Michetti F, Lauriola L, Rende M, Stolfi V, Battaglia F, Coccia D (1985) S-100 protein in the testis. An immunochemical and immunohistochemical study. Cell Tissue Res 240:137–142

    Article  PubMed  CAS  Google Scholar 

  • Moller CJ, Byskov AG, Roth J, Celis JE, Bock E (1991) NCAM in developing mouse gonads and ducts. Anat Embryol 184:541–548

    Article  PubMed  CAS  Google Scholar 

  • Morera AM, Benahmed M, Cochet C, Chauvin MA, Chambaz E, Revol A (1987) A TGFβ-like peptide is a possible intratesticular modulator of steroidogenesis. Ann N Y Acad Sci 513:494–496

    Article  Google Scholar 

  • Navone F, Jahn R, DiGioia G, Stukenbrok H, Greengard P, DeCamilli P (1986) Protein p38: an integral protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527

    Article  PubMed  CAS  Google Scholar 

  • Niemi M, Sharpe RM, Brown WRA (1986) Macrophages in the interstitial tissue of the rat testis. Cell Tissue Res 243:337–344

    Article  PubMed  CAS  Google Scholar 

  • O'Connor DT, Klein RL, Thureson-Klein AK, Barbosa JA (1991) Chromagranin A: localization and stoichiometry in large dense core catecholamine storage vesicles from sympathetic nerve. Brain Res 567:188–196

    Article  PubMed  Google Scholar 

  • Pearse AGE (1986) The diffuse neuroendocrine system: peptides, amines, placodes and the APUD theory. In: Hökfelt T, Fuxe K, Pernow B (eds). Progress in Brain Research, vol 68. Elsevier, Amsterdam, pp 25–31

    Google Scholar 

  • Pearse AGE (1987) The diffuse neuroendocrine system and the diencephalon. In: Scharrer B, Korf H-W Hartwig H-G (eds) Functional Morphology of Neuroendocrine Systems. Springer, Berlin Heidelberg New York, pp 133–138

    Google Scholar 

  • Polak JM, Bloom SR (1986) Immunocytochemistry of the diffuse neuroendocrine system. In: Polak JM, Van Noorden S (eds). Immunocytochemistry. Modern Methods and Applications, 2nd edn. Wright, Bristol, pp 328–348

    Google Scholar 

  • Redecker P, Jörns A, Jahn R, Grube D (1991) Synaptophysin immunoreactivity in the mammalian pancreas. Cell Tissue Res 264:461–467

    Article  PubMed  CAS  Google Scholar 

  • Saint-Pol P, Peyrat JP, Engelhardt RP, Leroy-Martin B (1986) Immunohistochemical localization of enkephalins in adult rat testis: evidence for a gonadotropin control. Andrologia 18:485–488

    PubMed  CAS  Google Scholar 

  • Schulze C (1984) Sertoli cells and Leydig cells in man. Adv Anat Embryiol Cell Biol 88:1–104

    CAS  Google Scholar 

  • Schulze W, Davidoff MS, Holstein AF (1987a) Are Leydig cells of neural origin? Substance P-like immunoreactivity in human testicular tissue. Acta Endocrinol 115:373–377

    PubMed  CAS  Google Scholar 

  • Schulze W, Davidoff MS, Holstein AF, Schirren C (1987b) Processing of testicular biopsies—fixed in Stieve's solution for visualization of substance P- and methionine enkephalin-immunoreactivity in Leydig cells. Andrologia 19:419–422

    PubMed  CAS  Google Scholar 

  • Schulze W, Davidoff MS, Ivell R, Holstein AF (1991) Neuron-specific enolase-like immunoreactivity in human Leydig cells Andrologia 23:279–283

    Article  PubMed  CAS  Google Scholar 

  • Skinner MK (1991) Cell-cell interactions in the testis. Endocr Rev 12:45–77

    PubMed  CAS  Google Scholar 

  • Sordoillet C, Chauvin MA, Deperetti E, Morera AM, Benahmed M (1991) Epidermal growth factor directly stimulates steroidogenesis in primary cultures of porcine Leydig cells—Actions and sites of actions. Endocrinology 128:2160–2168

    PubMed  CAS  Google Scholar 

  • Stalker A, Hermo L, Antakly A (1991) Subcellular distribution of [3H]-dexamethasone mesylate binding sites in Leydig cells using electron microscope autoradiography. Am J Anat 190:19–30

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody method of immunohistochemistry. Preparation and properties of soluble antigen-natibody complex (horse-radish peroxidase anti-peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    PubMed  CAS  Google Scholar 

  • Tähkä KM (1986) Current aspects of Leydig cells function and its regulation. J Reprod Fert 78:367–380

    Google Scholar 

  • Takei N, Kondo J, Nagaike K, Ohsawa K, Kato K, Kohsaka S (1991) Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J Neurochem 57:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Teerds KJ, De Rooji DG, Rommerts FFG, Tweel I van der, Wensing CJG (1989) Turnover time of Leydig cells and other interstitial cells in testes of adult rats. Arch Androl 23:105–111

    Article  PubMed  CAS  Google Scholar 

  • Tinajero JC, Fabbri A, Dufau ML (1992) Regulation of corticotropin-releasing factor secretion from Leydig cells by serotonin. Endocrinology 130:1780–1788

    Article  PubMed  CAS  Google Scholar 

  • Tsong SD, Phillips D, Halmi N, Liotta AS, Margioris A, Bardin CW, Krieger DT (1982) ACTH and β-endorphin-related peptides are present in multiple sites in the reproductive tract of male rat. Endocrinology 110:2204–2206

    Article  PubMed  CAS  Google Scholar 

  • Vernon RB, Sage H (1989) The calcium-binding protein SPARC is secreted by Leydig and Sertoli cells of the adult mouse testis. Biol Reprod 40:1329–1340

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann B, Huttner WB (1989) Synaptophysin and chromogranins/secretogranins—widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch [B] 58:95–121

    CAS  Google Scholar 

  • Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83:3500–3504

    Article  PubMed  CAS  Google Scholar 

  • Zieher LM, Debeljuk L, Iturriza F, Mancini RE (1971) Biogenic amine concentration in testis of rats at different ages. Endocrinology 88:351–354

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Werner Hilscher on the occasion of this 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidoff, M.S., Schulze, W., Middendorff, R. et al. The Leydig cell of the human testis —A new member of the diffuse neuroendocrine system. Cell Tissue Res 271, 429–439 (1993). https://doi.org/10.1007/BF02913725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913725

Key words

Navigation