Skip to main content
Log in

Peroxidase activities of two rice cultivars differing in salinity tolerance as affected by proline and NaCl

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Proline content, ion accumulation, cell wall and soluble peroxidase activities were determined in control and salt-treated calli (150 nM NaCl) and whole plants (30 mM NaCl) of two rice cultivars (salt sensitive cv. IKP and salt tolerant cv. Aiwu). Under salinity, the highest accumulation of Na+, Cl and proline occurred in calli, roots and younger leaves of cv. IKP, coupled with the highest decrease in K+ content; accumulations of Na+ and Cl were restricted to older leaves in cv. Aiwu. Relative growth rates of calli and roots or shoots from both cultivars were not linked to peroxidase activities. High concentrations (1 M) of exogenously applied glycerol did not inhibitin vitro activities of soluble peroxidase extracted from control and salt-treated calli or plants. Conversely, 35–55% (in cv. IKP) or 60–80% (in cv. Aiwu) of soluble peroxidase activities were found in presence of isosmotic proline concentration. There were no differences between proline and glycerol effects onin vitro cell wall peroxidase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IAA:

indole acetic acid

IKP:

I Kong Pao

References

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. —Plant Soil39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bourgeais-Chaillou, P., Guerrier, G.: Salt responses inLycopersicon esculentum calli and whole plants.—J. Plant Physiol.140: 494–501, 1992.

    CAS  Google Scholar 

  • Bourgeais-Chaillou, P., Pérez-Alfocea, F., Guerrier, G.: Evolution ontogénique de la tolérance au NaCl chez le soja: comparaison des résponses au sel à deux stades de développement et chez les cals correspondants.—Can. J. Bot.70: 1346–1354, 1992.

    Google Scholar 

  • Fieldes, M.A., Gerhardt, K.E.: Effects of Zn on flax seedlings: differences in the response of the cationic and anionic isozymes of peroxidase.—Plant Sci.96: 1–13, 1994.

    Article  CAS  Google Scholar 

  • Gaspar, T., Penel, C., Castillo, F.J., Greppin, H.: A two-step control of basic and acidic peroxidases and its significance for growth and development.—Physiol. Plant.64: 418–423, 1985.

    Article  CAS  Google Scholar 

  • Greenway, H., Munns, R.: Mechanisms of salt tolerance in nonhalophytes.—Annu. Rev. Plant Physiol.31: 149–190, 1980.

    Article  CAS  Google Scholar 

  • Guerrier, G.: Effets du NaCl sur les capacités oxydases durant la germination de semences de plantes sensibles ou tolérantes au sel.—Biol. Plant.29: 299–306, 1987.

    Article  CAS  Google Scholar 

  • Heimer, Y.M.: The effects of sodium chloride, potassium chloride and glycerol on the activity of nitrate reductase of a salt-tolerant and two non-tolerant plants.—Planta113: 279–281, 1973.

    Article  CAS  Google Scholar 

  • Lowry, O.H., Rosenbrough, N.J., Farr, A.J., Randall, R.J.: Protein measurement with the Folin phenol reagent.—J. biol. Chem.193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  • Lutts, S., Bouharmont, J.:In vitro selection for salt tolerance in rice: the possible involvement of ethylene.—In: Fritig, B., Legrand, M. (ed.): Mechanisms of Plant Defense Responses. Pp. 174–175. Kluwer Academic Publishers, Dordrecht-Boston-Lancaster 1993.

    Google Scholar 

  • MacAdam, J.W., Nelson, C.J., Sharp, R.E.: Peroxidase activity in the leaf elongation zone of tall fescue. I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone.—Plant Physiol.99: 872–878, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Maehly, P.C., Chance, M.: The assay of catalase and peroxidases.—In: Gluck, D. (ed.): Methods of Biochemical Analysis. Pp. 357–424. Interscience Publishers, New York 1954.

    Chapter  Google Scholar 

  • Manetas, Y.: A re-examination of NaCl effects on phosphoenolpyruvate carboxylase at high (physiological) enzyme concentrations.—Physiol. Plant.78: 225–229, 1990.

    Article  CAS  Google Scholar 

  • Mittal, R., Dubey, R.S.: Behaviour of peroxidases in rice: changes in enzyme activity and isoforms in relation to salt tolerance.—Plant Physiol. Biochem.29: 31–40, 1991.

    CAS  Google Scholar 

  • Nikolopoulos, D., Manetas, Y.: Compatible solutes andin vitro stability ofSalsola soda enzymes: proline incompatibility.—Phytochemistry30: 411–413, 1991.

    Article  CAS  Google Scholar 

  • Pérez-Alfocea, F., Estãn, M.T., Caro, M., Guerrier, G.: Osmotic adjustment inLycopersicon esculentum andL. pennellii under NaCl and polyethylene glycol 6000 iso-osmotic stresses.— Physiol. Plant.87: 493–498, 1993.

    Article  Google Scholar 

  • Pollard, A., Wyn Jones, R.G.: Enzyme activities in concentrated solutions of glycinebetaine and other solutes.—Planta144: 291–298, 1979.

    Article  CAS  Google Scholar 

  • Siegel, B.Z.: Plant peroxidases—an organismic perspective.—Plant Growth Regul.12: 303–312, 1993.

    Article  CAS  Google Scholar 

  • Smirnoff, N.: The role of active oxygen in the response of plants to water deficit and dessication.— New Phytol.125: 27–58, 1993.

    Article  CAS  Google Scholar 

  • Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes.— Phytochemistry28: 1057–1060, 1989.

    Article  CAS  Google Scholar 

  • Stevens, H.C., Calvan, M., Lee, K., Siegel, Z.: Peroxidase activity as a screening parameters for salt stress inBrassica species.—Phytochemistry17: 1521–1522, 1978.

    Article  CAS  Google Scholar 

  • Stewart, G.R., Lee, J.A.: The role of proline accumulation in halophytes.—Planta120: 279–289, 1974.

    Article  CAS  Google Scholar 

  • Yeo, A.R., Flowers, T.J.: Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties to saline soils.—In: Turner, N.C., Passioura, J.B. (ed.): Plant Growth, Drought and Salinity. Pp. 161–175. CSIRO Publishers, Canberra 1986.

    Google Scholar 

  • Yeo, A.R., Yeo, M.E., Flowers, S.A., Flowers, T.J.: Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance and their relationship to overall performance.—Theor. appl. Genet.79: 377–384, 1990.

    Article  Google Scholar 

  • Yoshida, S., Forno, O.A., Cock, J.H., Gomez, K.A.: Laboratory Manual for Physiological Studies of Rice.—International Rice Research Institute, Manila 1976.

    Google Scholar 

  • Zheng, X., Van Huystee, R.B.: Anionic peroxidase catalysed ascorbic acid and IAA oxidation in the presence of hydrogen peroxide—a defence system against peroxidative stress in peanut plant.— Phytochemistry31: 1895–1899, 1992.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutts, S., Guerrier, G. Peroxidase activities of two rice cultivars differing in salinity tolerance as affected by proline and NaCl. Biol Plant 37, 577–586 (1995). https://doi.org/10.1007/BF02908842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908842

Key words

Navigation