Skip to main content
Log in

Changing elevation, accretion, and tidal marsh plant assemblages in a South San Francisco Bay tidal marsh

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Analyses of organic content, pollen, and the carbon-isotopic composition of a 3.5-m sediment core collected from a subsided tidal marsh located in South San Francisco Bay, California, have provided a 500-yr record of sediment accretion and vegetation change before, during, and after a rapid 1 m increase in sea level. Core chronology was established using14C dating of fossil plant material, the first appearance of pollen types produced by plants not native to California, and changes in lead concentrations coincident with anthropogenic contamination. Prior to the mid 19th century, rates of sediment accretion were between 1 and 4 mm yr−1; sediment accretion accelerated to an average of 22 mm yr−1 following the initiation of subsidence. Changes in tidal marsh vegetation also accompanied this depositional change. Vegetation shifted from a high to low marsh assemblage, as indicated by a larger percentage of grass pollen, rhizomes ofSpartina foliosa, and a strong C4 signal. Between 1980 and 2001, Triangle marsh again developed high marsh vegetation, as indicated by higher percentages of the Amaranthaceane pollen type, seed deposition, includingSalicornia spp., and more negative carbon isotopic ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abbe, T., B. Anderew, andP. Faber. 1991. Physical evolution of a wetland restoration, p. 1732–1746. Coastal Zone 91, 7th Symposium on Coastal and Ocean Management. American Society of Civil Engineers, Long Beach, California.

    Google Scholar 

  • Adam, P. 2002. Saltmarshes in a time of change.Environmental conservation 29:39–61.

    Article  Google Scholar 

  • Allison, S. K. 1992. The influence of rainfall variability on the species composition of a northern California salt marsh plant assemblage.Vegetatio 101:145–160.

    Google Scholar 

  • Anderews J. T. andA. E. Jennings. 1987. Influence of sediment source and type on the magnetic susceptibility of fjord and shelf deposits, Vaffin Island and Baffin Bay, N.W., T.Canadian Journal of Earth Sciences 24:1386–1401.

    Google Scholar 

  • Atwater, B. F. 1979. Ancient processes at the site of Southern San Francisco Bay: Movement of the crust and changes in sea level, p. 31–46.In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Atwater, B. F. 1980. Attempts to correlate late quaternary climatic records between San Francisco Bay, the Sacramento-San Joaquin Delta and the Mokelumne River, California, Ph.D. Dissertation, University of Delaware, Newark, Delaware.

    Google Scholar 

  • Atwater, B. F. andC. W. Hedel. 1976. Distribution of seed plants with respect to tide levels and water salinity in the natural tidal marshes of the Northern San Francisco Bay estuary. U.S. Open-File Report 76-389. U.S. Geological Survey, Menlo Park, California.

    Google Scholar 

  • Atwater, B. F., C. W. Hedel, andE. J. Helley. 1977. Late Quaternary depositional history, Holocene sea-level changes, and vertical crustal movement, Southern San Francisco Bay, California. Professional Paper 1014. U.S. Geological Survey, Washington, D.C.

    Google Scholar 

  • Baumann, R. H. andJ. A. Miller. 1984. Mississippi deltaic wetland survival: Sedimentation versus coastal sub-mergence.Science 224:1093–1095.

    Article  Google Scholar 

  • Beechey, F. W. 1828. San Francisco Harbour: 1∶290,000, The Hydrographic Office, London, U.K.

    Google Scholar 

  • Brewer, W. H., S. Watson, andA. Gray. 1876. California Geological Survey, Volume 1: Botany. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Brown, A. K. 1960. Salt for the scraping: The origin of the San Francisco Bay salt industry.California Historical Society Quarterly 39:117–120.

    Google Scholar 

  • Brown, W. M. 1976. Sediment problems and planning in the San Francisco Bay region, California, p. 149–162.In Proceedings of the 3rd Federal Inter-agency Sedimentation Conference. Water Resources Council, Denver, Colorado.

    Google Scholar 

  • Brown, W. M. andL. E. Jackson. 1973. Erosional and depositional providences and sediment transport in the south and central part of the San Francisco Bay region, California. Miscellaneous Field Studies Map MF-515. U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia.

    Google Scholar 

  • Buchanan, P. A., D. H. Schoellhamer, andR. C. Sheipline. 1996. Summary of suspended-solids concentration data, San Francisco Bay, California, water year 1994. Open File Report 95-776. U.S. Geological Survey, Denver, Colorado.

    Google Scholar 

  • Byrne, R., B. L. Ingram, S. Staratt, F. Malamud-Roam, J. N. Collins, andM. E. Conrad. 2001. Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco estuary.Quaternary Research 55:66–76.

    Article  CAS  Google Scholar 

  • California Department of Public Works (CDPW). 1923. Flow in California Streams. California State Printing Office, Sacramento, California.

    Google Scholar 

  • California Department of Water Resources (CDWR). 1980. California rainfall summary: monthly total precipitation 1849–1979. State of California, Resources Agency, Department of Water Resources, Sacramento, California.

    Google Scholar 

  • Carlson, P. R. andD. S. McColloch. 1974. Aerial observations of suspended-sediment plumes in San Francisco Bay and the adjacent Pacific Ocean.Journal of Research of the U.S. Geological Survey 2:519–526.

    Google Scholar 

  • Cazenave, A., C. Cabanes, K. Dominh, M. C. Gennero, andC. Le Provost. 2003. Present-day sea level change: Observations and causes.Space Science Reviews 108:131–144.

    Article  Google Scholar 

  • Cheng, R. T., V. Casulli, andJ. W. Gartner. 1993. Tidal, residual, intertidal mudflat (TRIM) model and its applications to San Francisco Bay, California.Estuarine, Coastal and Shelf Science 36:235–280.

    Article  Google Scholar 

  • Churma, G. L. andP. Aharon. 1995. Stable carbon-isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime.Journal of Coastal Research 11:124–135.

    Google Scholar 

  • Clarke, W. C. 1959. The vegetation cover of the San Francisco Bay region in the early Spanish Period. Master's Thesis, University of California, Berkeley, California.

    Google Scholar 

  • Collins, J. N. andT. C. Foin. 1993. Evaluation of the impacts of aqueous salinity on the shoreline vegetation of tidal marshlands in the San Francisco estuary, p. 1–34.In J. R. Schubel (ed.), Managing Freshwater Discharge to the San Francisco Bay/Sacramento-San Joaquin Delta Estuary: The Scientific Basis for an Estuarine Standard. San Francisco Estuary Project, San Francisco, California.

    Google Scholar 

  • Conomos, T. J. andD. H. Peterson. 1977. Suspended-particle transport and circulation in San Francisco Bay, an overview, p. 82–91.In M Wiley (ed.), Estuarine Processes, Volume 2. Academic Press, New York.

    Google Scholar 

  • Cooper, W. S. 1926. Vegetational development upon alluvial fans in the vicinity of Palo Alto, California.Ecology 7:1–30.

    Article  Google Scholar 

  • Cuneo, K. 1987. San Francisco Bay salt marsh vegetation, geography and ecology: A baseline for use in impact assessment and restoration. Ph.D. Dissertation, University of California, Berkeley, California.

    Google Scholar 

  • Day, J. W., J. Rybczyk, F. Scarton, A. Rismondo, D. Are, andG. Cecconi. 1999. Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: A field and modeling approach.Estuarine, Coastal and Shelf Science 49:607–628.

    Article  Google Scholar 

  • Ember, L. M., D. F. Williams, andJ. T. Morris. 1987. Processes that influence carbon isotope variations in salt marsh sediments.Marine Ecology Progress Series 36:33–42.

    Article  Google Scholar 

  • Faegri, K. andJ. Iversen. 1975. Textbook of Pollen Analysis. Hafner Press, New York.

    Google Scholar 

  • Flick, R. E., J. F. Murray, andL. C. Ewing. 2003. Trends in United States tidal datum statistics and tide rangeJournal of Waterway, Port, Coastal, and Ocean Engineering 129:155–164.

    Article  Google Scholar 

  • Fraser, J. P. M. 1881. History of Santa Clara County, California including its geography, geology, topography, climatology and description. Alley Bowen, and Co., San Francisco, California.

    Google Scholar 

  • Frenkel, R. E. 1970. Ruderal Vegetation along Some California Roadsides, Volume 20. University of California Publications in Geography, University of California, Berkeley, California.

    Google Scholar 

  • Friedly, M. 2000. This brief Eden: A history of landscape change in California's Santa Clara Valley. Ph.D. Dissertation, Duke University, Durham, North Carolina.

    Google Scholar 

  • Fuller, C. C. 1982. The use of Pb-210, Th-234 and Cs-137 as tracers of sedimentary processes in San Francisco Bay, California. M.S. Thesis, University of Southern California, Los Angeles, California.

    Google Scholar 

  • Gilbert, G. K. 1917. Hydraulic mining debris in the Sierra Nevada. Professional Paper No. 105. U.S. Geological Survey, Washington, D.C.

    Google Scholar 

  • Gilliam, H. 1962. Weather of the San Francisco Bay region. University of California Press, Berkeley, California.

    Google Scholar 

  • Goals Project. 1999. Baylands Ecosystem Habitat Goals. A report of habitat recommendations prepared by the San Francisco Bay Area Wetlands Ecosystem Goals Project. U.S. Environmental Protection Agency, San Francisco, California and the San Francisco Bay Regional Water Quality Control Board, Oakland, California.

    Google Scholar 

  • Goman, M. 2001. Statistical analysis of modern seed assemblages from the San Francisco Bay: Applications for the reconstruction of paleo-salinity and paleo-tidal inundation,Journal of Paleolimnology 26:393–409.

    Article  Google Scholar 

  • Goman, M. andL. Wells. 2000. Trends in river flow affecting the northeastern reach of the San Francisco Bay estuary over the past 7000 years.Quaternary Research 54:206–217.

    Article  CAS  Google Scholar 

  • Goodfriend, G. A. andH. B. Rollins. 1998. Recent barrier retreat in Georgia: dating exhumed salt marshes by aspartic acid racemization and post-bomb radiocarbon.Journal of Coastal Research 14:960–969.

    Google Scholar 

  • Hager, S. W. andS. E. Schemel. 1996. Dissolved inorganic nitrogen, phosphorus and silicon in south San Francisco Bay, p. 189–215.In J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Haltiner, J. andP. Williams. 1987. Slough channel design in salt marsh restoration, p. 125–130.In Proceedings of the 8th Annual Meeting of the Society of Wetland Scientists. Society of Wetland Scientists, Seattle, Washington.

    Google Scholar 

  • Harvey, J. T. andAssociates. 2000. Marsh plant associations of South San Francisco Bay: 2000 comparative study. Environmental Services Agency, San Jose, California.http://www.ci.san-jose.ca.us/eds/PDFs/MarshPlantReport2000.pdf

    Google Scholar 

  • Harvey, J. T. andAssociates. 2001. South Bay tidal marsh studies technical discussion. Environmental Services Agency, San Jose, Californiahttp://www.ci.sanjose.ca.us/esd/PDFs/Revised%20Technical%20Discussion.pdf

    Google Scholar 

  • Harvey, J. T. andAssociates. 2002. Marsh plant associations of South San Francisco Bay: 2002 comparative study. Environmental Services Agency. San Jose, California.http://www.ci.san-jose.ca.us/esd/PDFs/2002%20Marsh%20Study.pdf

    Google Scholar 

  • Heiri, O., A. F. Lotter, andG. Lemcke 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results.Journal of Paleolimnology 25:101–110.

    Article  Google Scholar 

  • Hickman, C. J. 1993. The Jepson Manual: Higher Plants of California. University of California Press, Berkeley, California and Los Angeles, California.

    Google Scholar 

  • Hicks, S. D., H. A. Debaugh, andL. E. Hickman. 1983. Sea level variations for the United States, 1855–1980. National Oceanic and Atmospheric Administration, Washington, D.C.

    Google Scholar 

  • Hopkins, D. R. andV. T. Parker. 1984. A study of the seed bank of a salt-marsh in northern San Francisco Bay.American Journal of Botany 71:348–355.

    Article  Google Scholar 

  • Hornberger, M. I., S. N. Luoma, A. Van Geem, C. Fuller, andR. Amina. 1999. Historical trends of metals in the sediments of San Francisco Bay, California.Marine Chemistry 64:39–55.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2001: The Scientific basis, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Ivlev, A. A. 2001. Carbon isotope effects (13C/12C) in biological systems.Separation Science and Technology 36:1819–1914.

    Article  CAS  Google Scholar 

  • Jaffe, B. E., R. E. Smith, andL. Zink. 1998. Sedimentation changes in San Pablo Bay: 1856–1983. Open-File Report 98-759. U.S. Geological Survey, Menlo Park, California.

    Google Scholar 

  • Josselyn, M. andJ. C. Callaway. 1988. Ecological effects of global climate change: Wetland resources of San Francisco Bay. Environmental Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon.

    Google Scholar 

  • Kapp, R. O., O. K. Davis, andJ. E. King. 2000. Pollen and Spores. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.

    Google Scholar 

  • Kearny, M. S. andJ. C. Stevenson. 1991. Island land loss and marsh vertical accretion rate: Evidence for historical sea level changes in Chesapeake Bay.Journal of Coastal Research 7:403–415.

    Google Scholar 

  • Kennish, M. J. 2001. Coastal salt marsh systems in the U.S.: A review of anthropogenic impacts.Journal of Coastal Research 17:731–748.

    Google Scholar 

  • Kennish, M. J. 2002. Environmental threats and environmental future of estuaries.Environmental Conservation 29:78–107.

    Article  Google Scholar 

  • Krone, R. B. 1979. Sedimentation in the San Francisco Bay system, p. 85–96.In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Krone, R. B. 1996. Recent sedimenation in the San Francisco Bay system, p. 63–67.In J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Lacey, J. R., D. H. Schoellhamer, andJ. R. Burau. 1996. Suspended-solids flux at a shallow water site in South San Francisco Bay, California. Computer laser optical disk.In C. T. Bathala (ed.), North American Water and Environment Congress and Destructive Water. American Society of Civil Engineers, New York.

    Google Scholar 

  • Mahall, B. E. andR. B. Park. 1976. The ecotone betweenSpartina foliosa Trin. andSalicornia virginica L. In the salt mashes of San Francisco Bay I. Biomass and production.Journal of Ecology 64:421–433.

    Article  Google Scholar 

  • Malamud-Roam, K. P. 2000. Tidal regimes and tide marsh hydroperiod in the San Francisco estuary: Theory and implications for ecological restoration. Ph.D. Dissertation, University of California, Berkeley, California.

    Google Scholar 

  • Malamud-Roam, F. P. 2002. A late Holocene history of vegetation change in San Francisco estuary marshes using stable carbon isotopes and pollen analysis. Ph.D. Dissertation, University of California, Berkeley, California.

    Google Scholar 

  • Malamud-Roam, F. andB. L. Ingram. 2001. Carbon isotopic compositions of plants and sediments of tide marshes in the San Francisco estuary.Journal of Coastal Research 17:17–29.

    Google Scholar 

  • May, M. 1999. Vegetation and salinity changes over the last 2000 years at two wetland islands in the northern San Francisco estuary, California. Master's Thesis, University of California, Berkeley, California.

    Google Scholar 

  • McKee, K. L. andW. H. Patrick, Jr. 1988. The Relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: A review.Estuaries 11:143–151.

    Article  Google Scholar 

  • Moore, P. D. andJ. A. Webb. 1978. An Illustrated Guide to Pollen Analysis. Hodder and Stoughton, London, U.K.

    Google Scholar 

  • Mudie, P. J. andR. Byrne. 1980. Pollen evidence for historical sedimentation rates in California coastal marshes.Estuarine and Coastal Marine Science 10:305–316.

    Article  Google Scholar 

  • Munz, P. A. andD. D. Keck. 1968. A California Flora and Supplement. University of California Press, Berkeley, California.

    Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA). 2002. Water level tidal predictions. http://coops.nols.noaa.gov/index.html

  • Niemi, T. M. andN. T. Hall. 1996. Historical changes in the tidal marsh of Tomales Bay and Olema Creek, Marin County, California.Journal of Coastal Research 12:90–102.

    Google Scholar 

  • Niering, W. A., R. S. Warren, and C. G. Wymouth. 1977. Our dynamic tidal marshes: Vegetation changes as revealed by peat analysis.Connecticut Arboretum Bulletin 22, New London, Connecticut.

  • Nikitina, D.L., J. E. Pizzuto, R. A. Schwimmer, andK. W. Ramsey. 2000. An updated Holocene sea-level curve for the Delaware coast.Marine Geology 171:7–20.

    Article  CAS  Google Scholar 

  • Nydal, R. andK. Lövseth. 1983. Tracing bomb14C in the atmosphere 1962–1980.Journal of Geophysical Research 88:3621–3642.

    Article  CAS  Google Scholar 

  • Nydick, K. R., A. B. Bidwell, E. Thomas, andJ. C. Varekamp. 1995. A sea-level rise curve from Guilford, Connecticut, USA.Marine Geology 124:137–159.

    Article  CAS  Google Scholar 

  • Pacheco, T. 1941. Archives of the pueblo of San Jose. California Room, Martin Luther King, Jr. Library, San Jose, California.

    Google Scholar 

  • Patrick, W. H. andR. D. Delaune. 1990. Subsidence, accretion, and sea-level rise in South San Francisco Bay marshes.Limnology and Oceanography 35:1389–1395.

    Article  Google Scholar 

  • Planert, M. andJ. S. Williams. 1995. Groundwater Water Atlas of the United States, Segment 1, California, Nevada. Hydrologic Investigations Atlas 730-B. U.S. Geological Survey, Reston, Virginia.

    Google Scholar 

  • Poland, J. F. 1971. Land subsidence in the Santa Clara Valley, Alameda, San Mateo, and Santa Clara counties, California. Miscellaneous field studies map MF-336. U.S. Geological Survey, Reston, Virginia.

    Google Scholar 

  • Pont, D., J. W. Day, P. Hensel, andE. Franquet, F. Torre, P. Rioual, C. Ibanez, andE. Coulet. 2002. Response scenarios for the deltaic plain of the Rhone in the face of an acceleration in the rate of sea-level rise with special attention to Salicornia-type environments.Estuaries 25:337–358.

    Article  Google Scholar 

  • Porterfield, G. 1980. Sediment transport of streams tributary to San Francisco, San Pablo, and Suisun Bays, California, 1909–66. Water resources investigations. United States Geological Survey, Water Resources Division, Menlo Park, California.

    Google Scholar 

  • Redfield, A. C. 1972. Development of a New England salt marsh.Ecological Monographs. 42:201–237.

    Article  Google Scholar 

  • Reed, D. J. 1995. The response of coastal marshes to sea level rise: survival or submergence?Earth Surface Processes and Landfroms 20:39–48.

    Article  Google Scholar 

  • Reidy, L. M. 2001. Evidence of environmental change over the last 2000 years at Mountain Lake, in the northern San Francisco peninsula, California. Master's Thesis, University of California, Berkeley, California.

    Google Scholar 

  • Ritson, P. I., R. M. Bouse, A. R. Flegal, andS. N. Luoma. 1999. Stable lead isotopic analyses of historic and contemporary lead contamination of San Francisco Bay estuary.Marine Chemistry 64:71–83.

    Article  CAS  Google Scholar 

  • Rooney, J.J. andS. V. Smith. 1999. Watershed landuse and bay sedimentation.Journal of Coastal Research 15:478–485.

    Google Scholar 

  • Rowntree, R. A. 1973. Morphological change in a California estuary: sedimentation and marsh invasion at Bolinas Lagoon. Ph.D. Dissertation, University of California, Berkeley, California.

    Google Scholar 

  • Ruhl, C. A., D. H. Schoellhamer, R. P. Stumpf andC. L. Lindsay. 2001. Combined use of remote sensing images of San Francisco Bay to analyze suspended-sediment concentrations.Estuarine, Coastal and Shelf Science 53:801–812.

    Article  Google Scholar 

  • Scavia, D., J. C. Field, D. F. Boesch, R. W. Buddemeier, V. Burkett, D. R. Cayan, M. Fogarty, M. A. Harwell, R. W. Howarth, C. Mason, D. J. Reed, T. C. Royer, A. H. Sallenger, andJ. G. Titus. 2002. Climate change impacts on U.S. coastal and marine ecosystems.Estuaries 25:149–164.

    Article  Google Scholar 

  • Schmidt, D. A. andR. Bürgmann. 2003. Time-dependent uplift and subsidence in the Santa Clara Valley, California, from a large interferometric synthetic aperture radar data set.Journal of Geophysical Research—Solid Earth 108:2416.

    Article  Google Scholar 

  • Schoellhamer, D. H. 1996. Factors affecting suspended-solids concentrations in South San Francisco Bay, California.Journal of Geophysical Research 101:12087–12095.

    Article  Google Scholar 

  • Schoellhamer, D. H. 2002. Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA.Continental Shelf Research 22:1857–1866.

    Article  Google Scholar 

  • Schwimmer, R. A. andJ. E. Pizzuto. 2000. A model for the evolution of marsh shorelines.Journal of Sedimentary Research Section A: Sedimentary Petrology and Processes 70:1026–1035.

    CAS  Google Scholar 

  • Segl, M., I. Levin, H. Schoch-Fisher, M. Münnich, B. Kromer, J. Tschiersch, andK. O. Münnich. 1983. Anthropogenic14C variations.Radiocarbon 25:583–592.

    CAS  Google Scholar 

  • Shaw, J. andJ. Ceman. 1991. Salt-marsh aggradation in response to late-Holocene sea-level rise at Amherst Point, Nova Scotia, Canada.Holocene 9:439–451.

    Article  Google Scholar 

  • Siegel, S. W. andP. A. M. Bachand. 2002. Feasibility Analysis: South Bay Salt Pond Restoration, San Francisco estuary, California. Wetlands and Water Resources, San Rafael, California.

    Google Scholar 

  • Simas, T., J. P. Nunes, andJ. G.Ferreira. 2001. Effects of global climate change on coastal salt marshes.Ecological Modelling 139:1–15.

    Article  CAS  Google Scholar 

  • Smith, B. J. 1963. Sedimentation in the San Francisco Bay system, p. 675–708.In Proceedings of the federal interagency sedimentation conference. U.S. Department of Agriculture, Washington D.C.

    Google Scholar 

  • Smith, B. N. andS. Epstein. 1970. Biogeochemistry of stable isotopes of hydrogen and carbon in salt marsh biota.Plant Physiology 46:738–742.

    CAS  Google Scholar 

  • Smith, R. A. 1980. Golden Gate tidal measurements: 1854–1978.Journal of Waterways, Ports, Coastal and Ocean Engineering 106:407–409.

    Google Scholar 

  • Stevenson, J. C., L. G. Ward, andM. S. Kearney. 1986. Vertical accretion in marshes with varying rates of sea-level rise, p. 241–259.In: Wolfe, D. A. (ed.), Estuarine Variability. Academic Press, Orlando, Florida.

    Google Scholar 

  • Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis.Pollen et Spores 8:615–621.

    Google Scholar 

  • Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, F. G. McCormac, J. v.d. Plicht, andM. Spurk. 1998. INTCAL98 Radiocarbon Age Calibration, 24,000-0 cal BP.Radiocarbon 40:1041–1083.

    CAS  Google Scholar 

  • Titus, J. G. andV. Narayanan. 1996. The risk of sea level rise.Climatic Change 33:151–212.

    Article  CAS  Google Scholar 

  • U.S. Agricultural Adjustment Administration (USAAA). 1939. Aerial photography of Alameda and Santa Clara Counties. U.S. Agricultural Adjustment Administration. Washington, D.C.

    Google Scholar 

  • U.S. Coast and Geodetic Survey (USCGS). 1857. T-sheet Number 676 U.S. Coast and Geodetic Survey, San Francisco, California.

    Google Scholar 

  • U. S. Department of Commerce, Weather Bureau (USDC). 1994. Climatological Data, California, Annual Summaries. U.S. Department of Commerce, Weather Bureau, Asheville, North Carolina.

    Google Scholar 

  • U.S. Geological Survey (USGS). 2002. USGS daily values West I. Computer laser optical disks. Hydrosphere, Boulder, Colorado.

    Google Scholar 

  • Van de Plassche, O., K. Van der Borg, andA. F. M. De Jong. 1998. Sea level-climate correlation during the past 1400 years.Geology 26:319–322.

    Article  Google Scholar 

  • Van Geen, A. andS. N. Luoma. 1999. The impact of human activities on sediments of San Francisco Bay, California: An overview.Marine Chemistry 64:1–6.

    Article  Google Scholar 

  • Vancouver, G. A. 1801. A Voyage of Discovery to the North Pacific Ocean 1790–1795, Volume 3. Stockdale, London, U. K.

    Google Scholar 

  • WAC Corporation. 1999. Aerial Photography of Alameda and Santa Clara Counties. WAC Corporation, Eugene, Oregon.

    Google Scholar 

  • Watson, D., L. Weetman, D. Arnold, C. Allen, K. Lee, J. Powars, J. Thiesen, H. Troung, and R. Wandro. 1998. Spatial and Temporal Trace Level Monitoring Study of South San Francisco Bay. Proceedings of the National Water-Quality Monitoring Council National Monitoring Conference. Reno, Nevada.

  • Weir, D. A. 1957. That Fabulous Captain Waterman. Comet Press Books, New York, New York.

    Google Scholar 

  • Western Disaster Center (WDC). 2003. San Jose monthly total precipitation (inches). http://www.wdc.ndin.net/sjc/monthly-precip.html

  • Western Regional Climate Center (WRCC). 2003. San Francisco Bay Area, California Climate Summaries. http://www.wrcc.dri.edu/summary/climsmsfo.html

  • White, W. A. andT. A. Tremblay. 1995. Submergence of wetlands as a result of human-induced subsidence and faulting on the upper Texas coast.Journal of Coastal Research 11:788–807.

    Google Scholar 

  • White, W. A. andR. A. Morton. 1997. Wetland losses related to fault movement and hydrocarbon production, southern Texas coast.Journal of Coastal Research 13:1305–1320.

    Google Scholar 

  • Yang, S. L. 1999. Sedimentation on a growing intertidal island in the Yangtze River mouth.Estuarine, Coastal and Shelf Science 49:104–114.

    Article  Google Scholar 

Source of Unpublished Materials

  • Byrne, R. 2003. Professor, Geography Department, University of California, Berkeley, California. Personal Communication, October 2003.

  • Collins, J. 2003. Environmental Scientist, San Francisco Estuary Institute, Oakland, California.

  • Margolin, M. 2001. Publisher and Author, Public Broadcast, KQED radio, 88.5 FM, Tuesday, August 21, 2001

  • Merritt, M. 2002. Hydrologist, Santa Clara Valley Water District. Personal Communication, August 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Burke Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, E.B. Changing elevation, accretion, and tidal marsh plant assemblages in a South San Francisco Bay tidal marsh. Estuaries 27, 684–698 (2004). https://doi.org/10.1007/BF02907653

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02907653

Keywords

Navigation