Skip to main content
Log in

HSV as a gene transfer vector for the nervous system

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gene therapy for diseases of the nervous system requires vectors capable of delivering the therapeutic gene into postmitotic cells in vivo. Herpes simplex virus type 1 is a neurotropic virus that naturally establishes latency in neurons of the peripheral nervous system. Replication defective HSV vectors have been developed; these are deleted for at least one essential immediate early regulatory gene, rendering the virus less cytotoxic, incapable of reactivation, but still capable of establishing latency. Foreign genes can be vigorously expressed from an HSV-based vector in a transient manner in brain and other tissues. Long-term but weak foreign gene expression may be achieved in the nervous system by exploiting the transcriptional control mechanisms of the natural viral latency active promoter. To meet the needs of specific applications, either highly active long-term or regulatable transgene expression will be needed, requiring further studies in order to design the appropriate latency-based promoter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeLuca, N. A., McCarthy, A. M., and Schaffer, P. A. (1985) Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4.J. Virol. 56, 558–570.

    PubMed  CAS  Google Scholar 

  2. Roizman, B. and Sears, A.E. (1993) Herpes simplex viruses and their replication, inThe Human Herpesviruses (Roizman, B., Whitley, R. J., and Lopez, C. eds.), Raven, New York, pp. 11–68.

    Google Scholar 

  3. Honess, R. W. and Roizman, B. (1974) Regulation of herpes virus macromolecular synthesis. I. cascade regulation of the synthesis of three groups of viral proteins.J. Virol. 14, 8–19.

    PubMed  CAS  Google Scholar 

  4. McCarthy, A. M., McMahan, L., and Schaffer, P. A. (1989) Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficent.J. Virol. 63, 18–27.

    PubMed  CAS  Google Scholar 

  5. Roizman, B. and Sears, A. E. (1990) Herpes simplex viruses and their replication, inVirology, 2nd ed. (Fields, B. N., Knipe, D. M., Chanock, R. M., Hirsch, M. S., Melnick, J. L., Monath, T. P., and Roizman, B., eds.), Raven, New York, pp. 1787–1841.

    Google Scholar 

  6. Ramakrishnan, R., Fink, D. J., Guihua, J., Desai, P., Glorioso, J. C., and Levine, M. (1994) Competitive quantitative polymerase chain reaction (PCR) analysis of herpes simplex virus type 1 DNA and LAT RNA in latently infected cells of brain.J. Virol. 68, 1864–1870.

    PubMed  CAS  Google Scholar 

  7. Dressler, G. R., Rock, D. L., and Fraser, N. W. (1987) Latent herpes simplex virus type 1 DNA is not extensively methylatedin vivo.J. Gen. Virol. 68, 1761–1765.

    PubMed  CAS  Google Scholar 

  8. Deshmane, S. L. and Fraser, N. W. (1989) During latency herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure.J. Virol. 63, 943–947.

    PubMed  CAS  Google Scholar 

  9. Bak, I. J., Markhan, C. H., and Cook, M. L. (1977) Intra-axonal transport of herpes simplex virus in the rat central nervous system.Brain Res. 136, 415–429.

    Article  PubMed  CAS  Google Scholar 

  10. McFarland, D. J., Sikora, E., and Hotchkin, J. (1986) The production of focal herpes encephalitis in mice by stereotaxic inoculation of virus: anatomical and behavioral effects.J. Neurol. Sci. 72, 307–318.

    Article  PubMed  CAS  Google Scholar 

  11. Spivach, J. G. and Fraser, N. W. (1987) Detection of herpes simplex virus type 1 transcripts during latent infection in mice.J. Virol. 61, 3841–3847.

    Google Scholar 

  12. Spivack, J. G. and Fraser, N. W. (1988) Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection.J. Virol. 62, 1479–1485.

    PubMed  CAS  Google Scholar 

  13. Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L., and Feldman, L. T. (1987) RNA complementary to a herpesvirus α gene mRNA is prominent in latently infected neurons.Science 235, 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  14. Stevens, J. G. (1989) Human herpesviruses: a consideration of the latent state.Microbiol. Rev. 53, 318–332.

    PubMed  CAS  Google Scholar 

  15. Wagner, E. K., Flanagan, W. M., Devi-Rao, G. B., Zhang, Y. F., Hill, J. M., Anderson, K. P., and Stevens, J. G. (1988) The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection.J. Virol. 62, 4577–4585.

    PubMed  CAS  Google Scholar 

  16. Devi-Rao, G. B., Goddard, S. A., Hecht, L. M., Rochford, R., Rice, M. K., and Wagner, E. K. (1991) Relationship between polyadenylated and nonpolyadenylated, HSV type 1 latency-associated transcripts.J. Gen. Virol. 65, 2179–2190.

    CAS  Google Scholar 

  17. Gordon, Y. J., Johnson, B., Romanowski, E., and Araullo-Cruz, J. (1988) RNA complementary to herpes simplex virus type 1 ICPO gene demonstrated in neurons of human trigeminal ganglia.J. Virol. 62, 1832–1835.

    PubMed  CAS  Google Scholar 

  18. Farrell, M. J., Dobson, A. T., and Feldman, L. T. (1991) Herpes simplex virus latency-associated transcript is a stable intron.Proc. Natl. Acad. Sci. USA 88, 790–794.

    Article  PubMed  CAS  Google Scholar 

  19. Rock, D. L., Nesburn, A. B., Ghiasi, H., Ong, J., Lewis, T. L., Lokensgard, J. R., and Wechsler, S. L. (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1.J. Virol. 61, 3820–3826.

    PubMed  CAS  Google Scholar 

  20. Sedarati, F., Izumi, K. M., Wagner, E. K., and Stevens, J. G. (1989) Herpes simplex virus type 1 latency-associated transcript plays no role in establishment or maintenance of a latent infection in murine sensory neurons.J. Virol. 63, 4455–4458.

    PubMed  CAS  Google Scholar 

  21. Batchelor, A. H. and O’Hare, P. O. (1990) Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1.J. Virol. 64, 3269–3279.

    PubMed  CAS  Google Scholar 

  22. Batchelor, A. H. and O’Hare, P. O. (1992) Localization of cis-acting sequence requirements in the promoter of the latency-associated transcript of herpes simplex virus type 1 required for cell-type-specific activity.J. Virol. 66, 3573–3582.

    PubMed  CAS  Google Scholar 

  23. Dobson, A. T., Sederati, F., Devi-Rao, G., Flanagan, W. M., Farrell, M. I., Stevens, J. G., Wagner, E. K., and Feldman, L. T. (1989) Identification of the latency-associated transcript promoter by expression of rabbit β-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus.J. Virol. 63, 3844–3851.

    PubMed  CAS  Google Scholar 

  24. Goins, W. F., Sternberg, L. R., Croen, K. D., Krause, P. R., Hendricks, R. L., Fink, D. J., Straus, S. E., Levine, M., and Glorioso, J. C. (1994) A novel latency active promoter is contained within the herpes simplex virus type 1 U l flanking repeats.J. Virol. 68, 2239–2252.

    PubMed  CAS  Google Scholar 

  25. Leib, D. A., Nadeau, K. C., Rundle, S. A., and Schaffer, P. A. (1991) Promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivations.Proc. Natl. Acad. Sci. USA 88, 48–52.

    Article  PubMed  CAS  Google Scholar 

  26. Nicosia, M., Deshmane, S. L., Zabolotny, J. M., Valyi-Nagy, T., and Fraser, N. W. (1993) Herpes simplex virus type 1 latency-associated transcript (LAT) promoter deletion mutants can express a 2-kilobase transcript mapping to the LAT region.J. Virol. 67, 7276–7283.

    PubMed  CAS  Google Scholar 

  27. Rader, K. A., Acklund-Berglund, C. E., Miller, J. K., Pepose, J. S., and Leib, D. A. (1993)In vivo characterization of site-directed mutants in the promoter of the herpes simplex virus type 1 latency-associated the herpes simplex virus type 1 latency-associated transcripts.J. Gen. Virol. 74, 1859–1869.

    Article  PubMed  CAS  Google Scholar 

  28. Zwaagstra, J., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1989)In vitro promoter activity associated with the latency-associated transcript gene of herpes simplex virus type 1.J. Gen. Virol. 70, 2163–2169.

    PubMed  CAS  Google Scholar 

  29. Zwaagstra, J. C., Ghiasi, H., Slanina, S. M., Nesburn, A. G., Wheatley, S. C., Lillycrop, K., Wood, J., Latchman, D. S., Patel, K., and Weschler, S. L. (1990) Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript.J. Virol. 64, 5019–5028.

    PubMed  CAS  Google Scholar 

  30. Zwaagstra, J. C., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1991) Identification of a major regulatory sequence in the latency-associated transcript (LAT) promoter of herpes simplex virus type 1 (HSV-1).Virology 182, 287–297.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, X., Schmidt, M. C., Goins, W. F., and Glorioso, J. C. (1995) Two herpes simplex virus type 1 latency-active promoters differ in their contribution to latency-associated transcript expression during lytic and latent infection.J. Virol. (submitted).

  32. Johnson, P. A., Miyanohara, A., Levine, F., Cahill, T., and Friedman, T. (1992) Cytotoxicity of a replication defective mutant of herpes simplex virus type 1.J. Virol. 66, 2952–2965.

    PubMed  CAS  Google Scholar 

  33. Samaniego, L., Webb, A., and DeLuca, N. (1995) Functional interactions between herpes simplex virus immediate early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4.J. Virol., in press.

  34. Johnson, P. A., Wang, M. J., and Friedman, T. (1994) Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function.J. Virol. 68, 6347–6362.

    PubMed  CAS  Google Scholar 

  35. Mackem, S. and Roizman, B. (1982) Structural features of the herpes simplex virus α gene 4, 0, and 27 promoter-regulatory sequences which confer α regulation on chimeric thymidine kinase genes.J. Virol. 44, 939–949.

    PubMed  CAS  Google Scholar 

  36. Kristie, T. M. and Roizman, B. (1984) Separation of sequences defining basal expression from those conferring a gene recognition within the regulatory domains of herpes simplex virus 1 α genes.Proc. Natl. Acad. Sci. USA 81, 4065–4069.

    Article  PubMed  CAS  Google Scholar 

  37. Batterson, W. and Roizman, B. (1983) Characterization of the herpes simplex virion-associated factor responsible for the induction of α genes.J. Virol. 46, 371–377.

    PubMed  CAS  Google Scholar 

  38. Campbell, M. E. M., Palfreyman, J. W., and Preston, C. M. (1984) Identification of herpes simplex virus DNA sequences which encode atrans-activing polypeptide responsible for stimulation of immediate early transcription.J. Mol. Biol. 180, 1–19.

    Article  PubMed  CAS  Google Scholar 

  39. Cordingly, M. G., Campbell, M. E. M., and Preston, C. M. (1983) Functional analysis of a herpes simplex virus type 1 promoter: identification of far-upstream regulatory sequences.Nucleic Acids Res. 11, 2347–2365.

    Article  Google Scholar 

  40. Cai, W. and Schaffer, P. A. (1989) Herpes simplex virus type 1 ICP0 play a critical role in the de novo synthesis of infectious virus following the transfection of viral DNA.J. Virol. 63, 629–637.

    Google Scholar 

  41. Everett, R. D. (1987) The regulation of transcription of viral and cellular genes by herpesvirus immediate-early gene products.Anticancer Res. 7, 589–604.

    PubMed  CAS  Google Scholar 

  42. O’Hare, P. and Hayward, G. S. (1985) Evidence for a direct role for both the 175,000- and 110,000-molecular-weight immediate-early proteins of herpes simplex virus in the transduction of delayed-early promoters.J. Gen. Virol. 67, 2365–2380.

    Google Scholar 

  43. Cai, W. and Schaffer, P. A. (1992) Herpes simplex virus type 1 ICPO regulates expression of immediate early, early and late genes in productivity infected cells.J. Virol. 66, 2904–2915.

    PubMed  CAS  Google Scholar 

  44. Quinlan, M. and Knipe, D. (1985) Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral functions.Mol. Cell. Biol. 5, 957–963.

    PubMed  CAS  Google Scholar 

  45. Zhu, Z., Cai, W., and Schaffer, P. A. (1994) Cooperativity among herpes simplex virus type 1 immediate-early regulatory proteins: ICP4 and ICP27 affect the intracellular localization of ICPO.J. Virol. 68, 3027–3040.

    PubMed  CAS  Google Scholar 

  46. Stow, N. D. and Stow, E. C. (1986) Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110.J. Gen. Virol. 67, 2571–2585.

    PubMed  CAS  Google Scholar 

  47. Sacks, W. R. and Schaffer, P. A. (1987) Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture.J. Virol. 61, 829–839.

    PubMed  CAS  Google Scholar 

  48. Kwong, A. D. and Frenkel, N. (1987) Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs.Proc. Natl. Acad. Sci. USA 84, 1926–1930.

    Article  PubMed  CAS  Google Scholar 

  49. Oroskar, A. A. and Read, G. S. (1989) Control of mRNA stability by the virion host shut-off function of herpes simplex virus.J. Virol. 63, 1897–1906.

    PubMed  CAS  Google Scholar 

  50. Read, G. S. and Frenkel, N. (1983) Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and abnormal synthesis of a (immediate-early) viral polypeptides.J. Virol. 46, 498–512.

    PubMed  CAS  Google Scholar 

  51. Desai, P., Ramakrishnan, R., Lin, Z. W., Osak, B., Glorioso, J. C., and Levine, M. (1993) The RR1 gene of herpes simplex virus type 1 is uniquelytrans activated by ICP0 during infection.J. Virol. 67, 6125–6135.

    PubMed  CAS  Google Scholar 

  52. Chung, T. D., Wymer, J. P., Kulka, M., Smith, C. C., and Aurelian, L. (1989) Protein kinase activity associated with the large subunit of the herpes simplex virus type 2 ribonucleotide reductase (ICP10).J. Virol. 63, 3389–3398.

    PubMed  CAS  Google Scholar 

  53. Luo, J. H., Smith, C. C., Kulka, M., and Aurelian, L. (1991) A truncated protein kinase domain of the large subunit of the herpes simplex virus type 2 ribonucleotide reductase (ICP10) expressed inEscherichia coli.J. Biol. Chem. 266, 20,976–20,983.

    CAS  Google Scholar 

  54. Luo, J. H. and Aurelian, L. (1992) The transmembrane helical segment but not the invariant lysine is required for the kinase activity of the large subunit of herpes simplex virus type 2 ribonucleotide reductase.J. Biol. Chem. 267, 9645–9653.

    PubMed  CAS  Google Scholar 

  55. York, I. A., Roop, C., Andrews, D. W., Riddell, S. R., Graham, F. L., and Johnson, D. C. (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes.Cell 77, 525–555.

    Article  PubMed  CAS  Google Scholar 

  56. Palella, T. D., Hidaka, Y., Silverman, L. J., Levine, M., Glorioso, J. C., and Kelley, W. M. (1989) Expression of human HPRT mRNA in brains of mice infected with a recombinant herpes simplex virus type 1 vector.Gene 80, 137–144.

    Article  PubMed  CAS  Google Scholar 

  57. Fink, D. J., Sternberg, L. R., Weber, P. C., Mata, M., Goins, W. F., and Glorioso, J. C. (1992) In vivo expression of β-galactosidase in hippocampal neurons by HSV-mediated gene transfer.Human Gene Ther. 3, 11–19.

    CAS  Google Scholar 

  58. Anderson J. K., Garber D. A., Meaney C. A., and Breakefield X. O. (1992) Gene transfer into mammalian central nervous system using herpesvirus vectors: extended expression of bacteriallacZ in neurons using the neuron-specific enolase promoter.Hum. Gene Ther. 3, 487–499.

    Google Scholar 

  59. Chiocca, A. E., Choi, B. B., Cai, W., DeLuca, N. A., Schaffer, P. A., DeFiglia, M., Breakefield, X. O., and Martuza, R. L. (1990) Transfer and expression of thelacZ gene in rat brain neurons by herpes simplex virus mutants.New Biol. 2, 739–746.

    PubMed  CAS  Google Scholar 

  60. Forss-Petter, S., Danielson, P. E., Casicas, S., Battenberg, E., Price, J., Nerenberg, M., and Sutcliffe, J. G. (1990) Transgenic mice expressing β-galactosidase in mature neurons under neuron-specific enolase promoter control.Neuron 5, 187–197.

    Article  PubMed  CAS  Google Scholar 

  61. Koedood, M., Fichtel, A., Meier, P., and Mitchell, P. J. (1995) Human cytomegalovirus (HCMV) immediate-early enhancer/promoter specificity during embryogenesis defines target tissues of congenital HCMV infection.J. Virol. 69, 2194–2207.

    PubMed  CAS  Google Scholar 

  62. Furth, P. A., Hennighausen, L., Baker, C., Beatty, B., and Woychick, R. (1991) The variability in activity of the universally expressed human cytomegalovirus immediate early gene 1 enhancer/promoter in transgenic mice.Nucleic Acids Res. 19, 6205–6208.

    Article  PubMed  CAS  Google Scholar 

  63. Julien, J.-P., Tretjakoff, I., Beaudet, L., and Peterson, A. (1987) Expression and assembly of a human neurofilament protein in transgenic mice provide a novel neuronal marking system.Genes Dev. 1, 1085–1095.

    Article  PubMed  CAS  Google Scholar 

  64. Rincon-Limas, E., Krueger, D., and Patel, P. (1991) Functional characterization of the human hypoxanthine phosphoribosyltransferase gene promoter: evidence for a negative regulatory element.Mol. Cell. Biol. 11, 4157–4164.

    PubMed  CAS  Google Scholar 

  65. Mester, J. C., Pitha, P. M., and Glorioso, J. C. (1995) Antiviral activity of herpes simplex virus vectors expressing murine α1-interferan.Gene Therapy 2, 187–197.

    PubMed  CAS  Google Scholar 

  66. Wolfe, J. H., Deshmane, S. L., and Fraser, N. W. (1992) Herpes virus vector gene transfer and expression of β-glucuronidase in the central nervous system of MPS VII mice.Nature Genetics 1, 379–384.

    Article  PubMed  CAS  Google Scholar 

  67. Margolis, T. P., Bloom, D. C., Dobson, A. T., Feldman, L. T., and Stevens, J. G. (1993) Decreased reporter gene expression during latent infection with HSV LAT promoter constructs.Virology 197, 585–592.

    Article  PubMed  CAS  Google Scholar 

  68. Ho, D. Y. and Mocarski, E. S. (1989) Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse.Proc. Natl. Acad. Sci. USA.86, 7596–7600.

    Article  PubMed  CAS  Google Scholar 

  69. Bryan, P. N. and Folk, W. R. (1986) Enhancer sequences responsible for DNase I hypersensitivity in polyomavirus chromatin.Mol. Cell. Biol. 6, 2249–2252.

    PubMed  CAS  Google Scholar 

  70. Pikaart, M., Feng, J., and Villeponteau, B. (1992) The polyomavirus enhancer activates chromatin accessibility on integration into the HPRT gene.Mol. Cell. Biol. 12, 5785–5792.

    PubMed  CAS  Google Scholar 

  71. Dai, Y., Roman, M., Naviaux, R. K., and Verma, I. M. (1992) Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantationin vivo.Proc. Natl. Acad. Sci. USA 89, 10,892–10,895.

    Article  CAS  Google Scholar 

  72. Sauer, B., Whealy, M., Robbins, A., and Enquist, L. (1987) Site-specific insertion of DNA into a pseudorabies virus vector.Proc. Natl. Acad. Sci. USA 84, 9108–9112.

    Article  PubMed  CAS  Google Scholar 

  73. Gage, P. J., Sauer, B., Levine, M., and Glorioso, J. C. (1992) A cell-free recombination system for site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome.J. Virol. 66, 5509–5515.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glorioso, J.C., Bender, M.A., Goins, W.F. et al. HSV as a gene transfer vector for the nervous system. Mol Biotechnol 4, 87–99 (1995). https://doi.org/10.1007/BF02907473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02907473

Index Entries

Navigation