Skip to main content
Log in

Bacillus thuringiensis growth and toxicity

Basic and applied considerations

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Despite the known importance of the composition of culture media and culture conditions onBacillus thuringiensis growth and toxicity, very few reviews are concerned with this subject. This article reviews some aspects of the microbiology ofBacillus thuringinesis, and how toxicity is affected by the composition of growth media and bioreactor operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hannay, C. L. (1953) Crystalline inclusion in aerobic spore-forming bacteria.Nature 172, 1004.

    Article  PubMed  CAS  Google Scholar 

  2. Angus, T. A. (1954) A bacterial toxin paralyzing silkworm larvae.Nature (Lond.) 173, 545.

    Article  CAS  Google Scholar 

  3. Angus, T. A. (1956) Extraction, purification, and properties ofBacillus sotto toxin.Can. J. Microbiol. 2, 416–426.

    PubMed  CAS  Google Scholar 

  4. Sommerville, H. J. (1971) Formation of parasporal inclusion ofBacillus thuringiensis.Eur. J. Biochem. 18, 226–237.

    Article  Google Scholar 

  5. Bulla, L. A., Jr., St. Julian, G., and Rhodes, R. A. (1977) Characterization of the entomocidal parasporal crystal ofBacillus thuringiensis.J. Bacteriol. 130, 375–383.

    PubMed  CAS  Google Scholar 

  6. Singer, S. and Rogoff, M. H. (1968) Inhibition of growth ofBacillus thuringiensis by amino acids in defined media.J. Invertebr. Pathol. 12, 98–104.

    Article  PubMed  CAS  Google Scholar 

  7. Nickerson, K. W., St. Julian, G., and Bulla, L. A., Jr. (1974) Physiology of spore-forming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes ofBacillus thuringiensis.Appl. Microbiol. 28, 129–132.

    PubMed  CAS  Google Scholar 

  8. Nickerson, K. W., De Pinto, J., and Bulla, L. A., Jr. (1974) Sporulation ofBacillus thuringiensis without concurrent derepression of the Tricarboxylic acids cycle.J. Bacteriol. 117, 321–323.

    PubMed  CAS  Google Scholar 

  9. Whiteley, H. R. and Schnepf, H. E. (1986) The molecular biology of parasporal crystal body formation inBacillus thuringiensis.Annu. Rev. Microbiol. 40, 549–576.

    Article  PubMed  CAS  Google Scholar 

  10. Gill, S. S., Singh, G. J. P., and Hornung, J. M. (1987) Cell membrane interaction ofBacillus thuringiensis subsp.israelensis cytolytic toxins.Infect. Immun. 55, 1300–1308.

    PubMed  CAS  Google Scholar 

  11. Knowles, B. H. and Ellar, D. J. (1986) Characterization and partial purification of a plasma membrane receptor forBacillus thuringiensis varkurstaki lepidopteran-specific δ-endotoxin.J. Cell. Sci. 83, 89–101.

    PubMed  CAS  Google Scholar 

  12. Knowles, B. H. and Ellar, D. J. (1987) Colloidosmotic lysis is a general feature of the mechanism of action ofBacillus thuringiensis δ-endotoxins with different insect specificity.Biochem. Biophys. Acta 924, 509–518.

    CAS  Google Scholar 

  13. Rogoff, M. H. and Yousten, A. A. (1969)Bacillus thuringiensis: Microbiological considerations.Annu. Rev. Microbiol. 23, 357–389.

    Article  PubMed  CAS  Google Scholar 

  14. Bulla, L. A., Jr., Rhodes, R. A., and St. Julian, G. (1975) Bacteria as insect pathogens.Annu. Rev. Microbiol. 29, 163–190.

    Article  PubMed  CAS  Google Scholar 

  15. Lüthy, P., Cordier, J-L., and Fischer, H-M. (1982)Bacillus thuringiensis as a bacterial insecticide: basic considerations and application, inMicrobial and Viral Pesticides (Kurstak, E., ed.), Dekker, New York, pp. 35–74.

    Google Scholar 

  16. Aronson, A. I., Beckman, W., and Dunn, P. (1986)Bacillus thuringiensis and related insect pathogens.Microbiol. Rev. 50, 1–24.

    PubMed  CAS  Google Scholar 

  17. Rowe, G. E. and Margaritis, A. (1987) Bioprocess developments in the production of bioinsecticides byBacillus thuringiensis.CRC Crit. Rev. Biotechnol. 6, 87–127.

    Article  CAS  Google Scholar 

  18. Höfte, H. and Whiteley, H. R. (1989) Insecticidal crystal proteins ofBacillus thuringiensis.Microbiol. Rev. 53, 242–255.

    PubMed  Google Scholar 

  19. Priest, F. G. (1992) Biological control of mosquitoes and other biting flies byBacillus sphaericus andBacillus thuringiensis.J. Appl. Bacteriol. 72, 357–369.

    PubMed  CAS  Google Scholar 

  20. Gill, S. S., Cowles, E. A., and Pietrantonio, P. V. (1992) The mode of action ofBacillus thuringiensis endotoxins.Annu. Rev. Entomol. 37, 615–636.

    Article  PubMed  CAS  Google Scholar 

  21. Hickle, L. A. and Fitch, W. L. (1990) Analytical chemistry ofBacillus thuringiensis.ACS Symposium Series 432. ACS, Washington, DC.

    Google Scholar 

  22. de Barjac, H. and Sutherland, D. (eds.) (1990)Bacterial Control of Mosquitoes and Blackflies: Biochemistry, Genetics and Applications of Bacillus thuringiensis israelensis and Bacillus sphaericus, Rutgers University Press, New Brunswick, NJ.

    Google Scholar 

  23. Entwistle, P. F., Cory, J. S., Bailey, M. J., and Higgs, S. R. (1993)Bacillus thuringiensis, An Environmental Bioinsecticide: Theory and Practice. Wiley, Chichester, UK.

    Google Scholar 

  24. Ertola, R. (1987) Production ofBacillus thuringiensis insecticides, inHorizons of Biochemical Engineering (Aiba, S., ed.), University of Tokyo Press, Tokyo, pp. 187–199.

    Google Scholar 

  25. Dulmage, H. T., Correa, J. A., and Gallegos-Morales, G. (1990) Potential for improved formulations ofBacillus thuringiensis varisraelensis through standardization and fermentation development, inBacterial Control of Mosquitoes and Blackflies: Biochemistry, Genetics and Applications of Bacillus thuringiensis israelensis and Bacillus sphaericus (de Barjac, H. and Sutherland, D., eds.), Rutgers University Press, New Brunswick, NJ, pp. 110–133.

    Google Scholar 

  26. Aronson, J. N., Borris, D. P., Doerner, J. F., and Akers, E. (1975) γ-aminobutyric acid pathway and modified tricarboxylic acids cycle activity during growth and sporulation ofBacillus thuringiensis.Appl. Microbiol. 30, 489–492.

    PubMed  CAS  Google Scholar 

  27. Bulla, L. A., Jr., St. Julian, G., and Rhodes, R. A. (1971) Physiology of spore-forming bacteria associated with insects. III. Radiorespirometry of pyruvate, acetate, succinate, and glutamate oxidation.Can. J. Microbiol. 17, 1073–1079.

    Article  PubMed  CAS  Google Scholar 

  28. Egorov, N. S., Loriya, Zh. K., and Yudina, T. G. (1984) Influence of amino acids on the synthesis of exoprotease byBacillus thuringiensis.Appl. Biochem. Microbiol. 19, 487–491.

    Google Scholar 

  29. Bibilos, M. and Andrews, R. E., Jr. (1988) Inhibition ofBacillus thuringiensis proteases and their effects on crystal toxin proteins and cell-free translations.Can. J. Microbiol. 34, 740–747.

    CAS  Google Scholar 

  30. Borris, D. P. and Aronson, J. N. (1969) Relationship ofl-alanine andl-glutamate dehydrogenases ofBacillus thuringiensis.Biochim. Biophys. Acta 191, 716–718.

    PubMed  CAS  Google Scholar 

  31. Elmerich, C. (1972) Le cycle du glutamate, point de départ du métabolisme de l’azote, chezBacillus megaterium.Eur. J. Biochem. 27, 216–224.

    Article  PubMed  CAS  Google Scholar 

  32. White, P. J. (1979) Effects ofd-glutamate on enzymes af ammonia assimilation inBacillus megaterium NCIB 7581.J. Gen. Microbiol. 114, 159–168.

    CAS  Google Scholar 

  33. Schreier, H. J., Smith, T. M., Donohue, T. J., and Bernlohr, R. W. (1981) Regulation of nitrogen metabolism and sporulation inBacillus licheniformis, Sporulation and Germination (Levinson, H. S., Sonenshein, A. L., and Tipper, D. J., eds.), ASM, Washington, DC, pp. 1–12.

    Google Scholar 

  34. Fisher, S. H. and Sonenshein, A. L. (1991) Control of carbon and nitrogen metabolism inBacillus subtilis.Annu. Rev. Microbiol. 45, 107–135.

    Article  PubMed  CAS  Google Scholar 

  35. Meers, J. L., Tempest, D. W., and Brown, C. M. (1970) Glutamine(amide): 2-oxoglutarate aminotransferase oxido-reductase (NADP), an enzyme involved in the synthesis of glutamate by some bacteria.J. Gen. Microbiol. 64, 187–194.

    PubMed  CAS  Google Scholar 

  36. González, J. M., Jr., Brown, B. J., and Carlton, B. C. (1982) Transfer ofBacillus thuringiensis plasmids coding for δ-endotoxin among strains ofB. thuringiensis andB. cereus.Proc. Natl. Acad. Sci. USA 79, 6951–6955.

    Article  PubMed  Google Scholar 

  37. Faust, R. M., Abe, K., Held, G. A., Iizuka, T., Bulla, L. A., Jr., and Meyers, C. L. (1983) Evidence for plasmid-associated crystal toxin production inBacillus thuringiensis subsp.israelensis.Plasmid 9, 98–103.

    Article  PubMed  CAS  Google Scholar 

  38. Klier, A., Parsot, C., and Rapoport, G. (1983)In vitro transcription of the cloned chromosomal crystal gene fromBacillus thuringiensis.Nucleic Acids Res. 112, 3972–3987.

    Google Scholar 

  39. Wong, H. C., Schnepf, H. E., and Whiteley, H. R. (1983) Transcriptional and translational start sites for theBacillus thuringiensis crystal protein gene.J. Biol. Chem. 258, 1960–1967.

    PubMed  CAS  Google Scholar 

  40. Feitelson, J. S., Payne, J., and Kim, L. (1992)Bacillus thuringiensis: insects and beyond.Bio/Technology 10, 271–275.

    Article  Google Scholar 

  41. Kronstad, J. W., Schnepf, H. E., and Whiteley, H. R. (1983) Diversity of locations for theBacillus thuringiensis crystal protein gene.J. Bacteriol. 154, 419–428.

    PubMed  CAS  Google Scholar 

  42. Wabiko, H., Raymond, K., and Bulla, L. A., Jr. (1986)Bacillus thuringiensis entomocidal protoxin gene sequence and gene product analysis.DNA 5, 305–314.

    PubMed  CAS  Google Scholar 

  43. Adang, M. J., Staver, M. J., Rocheleau, T. A., Leighton, J., Barker, R. F., and Thompson, D. V. (1985) Characterized full-length and truncated plasmid clones of the crystal protein ofBT subsp.kurstaki HD-73 and their toxicity toManduca sexta.Gene 36, 289–300.

    Article  PubMed  CAS  Google Scholar 

  44. Brizzard, B. L. and Whiteley, H. R. (1988) Nucleotide sequence of an additional crystal protein gene cloned fromBacillus thuringiensis subsp.thuringiensis.Nucleic Acids Res. 16, 4168, 4169.

    Article  Google Scholar 

  45. Honnée, G., van der Salm, T., and Vosser, B. (1988) Nucleotide sequence of crystal protein genes isolated fromBacillus thuringiensis subspeciesentomocidus 60.5 coding for a toxin highly active againstSpodoptera species.Nucleic Acids Res. 16, 6240.

    Article  Google Scholar 

  46. Donovan, W. P., González, J. M., Gilbert, M. P., and Dankosik, C. (1988) Isolation and characterization of EG 2158, a new strain ofBacillus thuringiensis toxic to coleopteran larvae, and nucleotide sequence of the toxin gene.Mol. Gen. Genet. 214, 365–372.

    Article  PubMed  CAS  Google Scholar 

  47. Widner, W. R. and Whiteley, H. R. (1989) Two highly related insecticidal crystal proteins ofBacillus thuringiensis subsp.kurstaki possess different host range specificities.J. Bacteriol. 171, 965–974.

    PubMed  CAS  Google Scholar 

  48. Wu, D, Cao, X. L., Bai, Y. Y., and Aronson, A. I. (1991) Sequence of an operon containing a novel delta-endotoxin gene fromBacillus thuringiensis. FEMSMicrobiol. Lett. 81, 31–36.

    Article  CAS  Google Scholar 

  49. Herrnstadt, C., Soares, G. G., Wilcox, E. R., and Edwards, D. L. (1986) A new strain ofBacillus thuringiensis with activity against coleopteran insects.Bio/Technology 4, 305–308.

    Article  CAS  Google Scholar 

  50. Sick, A., Gaertner, F., and Wong, A. (1990) Nucleotide sequence of a coleopteran-active toxin gene from a new isolate ofBacillus thuringiensis subsp.tolworthi.Nucleic Acids Res. 18, 1305.

    Article  PubMed  CAS  Google Scholar 

  51. Ward, E. S., Ellar, D. J., and Chilcott, C. N. (1988) Single amino acid changes in theBacillus thuringiensis varisraelensis δ-endotoxin affect the toxicity and expression of the protein.J. Mol. Biol. 202, 527–535.

    Article  PubMed  CAS  Google Scholar 

  52. Chunjatupornchai, W., Höfte, H., Seurinck, J., Angsuthanasombat, C., and Vaeck, M. (1988) Common features ofBacillus thuringiensis toxins specific for Diptera and Lepidoptera.Eur. J. Biochem. 173, 9–16.

    Article  Google Scholar 

  53. Thorne, L., Garduno, F., Thompson, T., Decker, D., Zounes, M., Wild, M., Walfield, A., and Pollock, T. (1986) Structural similarity between the Lepidoptera-and Diptera-specific insecticidal endotoxin genes ofBacillus thuringiensis subspp.kurstaki andisraelensis.J. Bacteriol. 166, 801–811.

    PubMed  CAS  Google Scholar 

  54. Waalwijk, C., Dullemans, A. M., van Workum, M. E. S., and Visser, B. (1985) Molecular cloning and the nucleotide sequence of the Mr 28,000 crystal protein gene ofBacillus thuringiensis subsp.israelensis.Nucleic Acids Res. 13, 8207–8217.

    Article  PubMed  CAS  Google Scholar 

  55. Tyrrell, D. J., Bulla, L. A., Andrews, R. E., Kramer, K. J., Davidson, L. I., and Nordin, P. (1981) Comparative biochemistry of entomocidal parasporal crystals of selectedBacillus thuringiensis strains.J. Bacteriol. 145, 1052–1062.

    Google Scholar 

  56. Tojo, A. and Aizawa, K. (1983) Dissolution and degradation ofBacillus thuringiensis δ-endotoxin by gut juice protease of the silkwormBombyx mori.Appl. Environ. Microbiol. 45, 576–580.

    PubMed  CAS  Google Scholar 

  57. Yamamoto, T. (1983) Identification of entomocidal toxins ofBacillus thuringiensis by high performance liquid chromatography.J. Gen. Microbiol. 129, 2595–2603.

    CAS  Google Scholar 

  58. Yamamoto, T., Watkinson, I. A., Kim, L., Sage, M. V., Stratton, R., Akanda, N., Li, Y., Ma, D-P., and Roe, B. A. (1988) Nucleotide sequence of the gene coding for a 130-kDa mosquitocidal protein ofBacillus thuringiensis varisraelensis.Gene 66, 107–120.

    Article  PubMed  CAS  Google Scholar 

  59. Krieg, A., Huger, A., Langenbruch, G., and Schnetter, W. (1983)Bacillus thuringiensis vartenebrionis: a new pathotype effective against larvae of Coleoptera.J. Appl. Entomol. 96, 500–508.

    Google Scholar 

  60. Ibarra, J. E. and Federici, B. A. (1986) Parasporal bodies ofBacillus thuringiensis subsp.morrisoni (PG-14) andBacillus thuringiensis subsp.israelensis are similar in protein composition and toxicity. FEMSMicrobiol. Lett. 34, 79–84.

    Article  CAS  Google Scholar 

  61. Chilcott, C. N. and Ellar, D. J. (1988) Comparative toxicity ofBacillus thuringiensis varisraelensis in vivo andin vitro.J. Gen. Microbiol. 134, 2551–2558.

    PubMed  CAS  Google Scholar 

  62. Tabashnik, B. E. (1992) Evaluation of synergism amongBacillus thuringiensis strains.Appl. Environ. Microbiol. 58, 3343–3346.

    PubMed  CAS  Google Scholar 

  63. Pfannenstiel, M. A., Couche, G. A., Ross, E. J., and Nickerson, K. W. (1986) Immunological relationships among proteins making up theBacillus thuringiensis subsp.israelensis crystalline toxin.Appl. Environ. Microbiol. 52, 644–649.

    PubMed  CAS  Google Scholar 

  64. Thomas, W.E. and Ellar, D.J. (1983)Bacillus thuringiensis varisraelensis crystal δ-endotoxin: effects on insect and mammalian cellsin vitro andin vivo.J. Cell. Sci. 60, 181–197.

    PubMed  CAS  Google Scholar 

  65. Cheung, P. Y. K. and Hammock, B. D. (1985) Separation of three biologically distinct activities from the parasporal crystal ofBacillus thuringiensis varisraelensis.Curr. Microbiol. 12, 121–126.

    Article  CAS  Google Scholar 

  66. Cheung, P. Y. K., Buster, D., Hammock, B. D., Roe, R. M., and Alford, A. R. (1987)Bacillus thuringiensis varisraelensis δ-endotoxin: evidence of neurotoxic action.Pest. Biochem. Physiol. 27, 42–49.

    Article  CAS  Google Scholar 

  67. Delecleuse, A., Bourgouin, C., Klier, A., and Rapoport, G. (1991) Deletion byin vivo recombination shows that the 28 kDa cytolytic polypeptide fromBacillus thuringiensis subsp.israelensis is not essential for mosquitocidal activity.J. Bacteriol. 173, 3374–3381.

    Google Scholar 

  68. Schnepf, H. E. and Whiteley, H. R. (1981) Cloning and expression of theBacillus thuringiensis crystal protein gene inEscherichia coli.Proc. Natl. Acad. Sci. USA 78, 2893–2897.

    Article  PubMed  CAS  Google Scholar 

  69. Höfte, H., de Greve, H., Seurinck, J., Jansens, S., Mahillon, J., Ampe, C., Vandekerkhove, J., van der Bruggen, H., van Montagu, M., Zabeau, M., and Vaeck, M. (1986) Structural and functional analysis of a cloned δ-endotoxin ofBacillus thuringiensis Berliner 1715.Eur. J. Biochem. 161, 273–280.

    Article  PubMed  Google Scholar 

  70. Galjart, N. J., Sivasubramanian, N., and Federici, B. A. (1987) Plasmid location, cloning and sequence analysis of the gene encoding a 27.3 kDa cytolytic protein fromBacillus thuringiensis subsp.morrisoni (PG-14).Curr. Microbiol. 16, 171–174.

    Article  CAS  Google Scholar 

  71. Kondo, S., Tamura, N., Kunitate, A., Hattori, M., Akashi, A., and Ohmori, I. (1987) Cloning and nucleotide sequencing of two insecticidal δ-endotoxin genes fromBacillus thuringiensis.Agric. Biol. Chem. 51, 455–463.

    CAS  Google Scholar 

  72. McLean, K. M. and Whiteley, H. R. (1987) Expression inEscherichia coli of a cloned crystal protein gene ofBacillus thuringiensis subsp.israelensis.J. Bacteriol. 169, 1017–1023.

    PubMed  CAS  Google Scholar 

  73. Shivakumar, A., Gundling, G., Benson, T., Casuto, D., Miller, M., and Spear, B. B. (1986) Vegetative expression of the δ-endotoxin genes ofBacillus thuringiensis subsp.kurstaki inB. subtilis.J. Bacteriol. 166, 194–204.

    PubMed  CAS  Google Scholar 

  74. Spear, B. B. (1987) Genetic engineering of bacterial insecticides, inBiotechnology in Agricultural Chemistry, ACS Symposium Series 334 (LeBaron, H. M., Humma, R. O., Honeycutt, R. C., and Duesing, J. H., eds.), ACS, Washington, DC, pp. 204–214.

    Google Scholar 

  75. Mettus, A. M. and Macaluso, A. (1990) Expression ofBacillus thuringiensis δ-endotoxin genes during vegetative growth.Appl. Environ. Microbiol. 56, 1128–1134.

    PubMed  CAS  Google Scholar 

  76. Thanabalu, T., Hindley, J., Brenner, S., Oei, C., and Berry, C. (1992) Expression of the mosquitocidal toxins ofBacillus sphaericus andBacillus thuringiensis subsp.israelensis by recombinantCaulobacter crescentus, a vehicle for biological control of aquatic insect larvae.Appl. Environ. Microbiol. 58, 905–910.

    PubMed  CAS  Google Scholar 

  77. Murphy, R. C. and Stephens, S. E., Jr. (1992) Cloning and expression of the cry IVD gene ofBacillus thuringiensis subsp.israelensis in the cyanobacteriumAgmenellum quadruplicatum PR-6 and its resulting larvicidal activity.Appl. Environ. Microbiol. 58, 1650–1655.

    PubMed  CAS  Google Scholar 

  78. Porter, A. G., Davidson, E. W., and Liu, H-W. (1993) Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes.Microbiol. Rev. 57, 838–861.

    PubMed  CAS  Google Scholar 

  79. Wu, D. and Aronson, A. I. (1990) Localized mutagensis defines regions important for toxicity of aBacillus thuringiensis δ-endotoxin, inGenetics and Biotechnology of Bacilli, vol. 3 (Zukowski, M. M., Ganesan, A. T., and Hoch, J. A., eds.), Academic, San Diego, California, pp. 211–220.

    Google Scholar 

  80. Levinson, B. L. (1990) High-performance liquid chromatography analysis of two β-exotoxins produced by someBacillus thuringiensis strains, inAnalytical chemistry of Bacillus thuringiensis (Hickle, L. A. and Fitch, W. L., eds.),ACS Symposium Series 432. ACS, Washington, DC, pp. 114–136.

    Google Scholar 

  81. Couche, G. A., Pfannenstiel, M. A., and Nickerson, K. W. (1987) Structural disulfide bonds in theBacillus thuringiensis subsp.israelensis protein crystal.J. Bacteriol. 169, 3281–3288.

    PubMed  CAS  Google Scholar 

  82. Bateson, J. B. and Stainsby, G. (1970) Analysis of the active principle in the biological insecticideBacillus thuringiensis Berliner.J. Food Technol. 5, 403–415.

    CAS  Google Scholar 

  83. Holmes, K. C. and Monro, R. E. (1965) Studies on the structure of parasporal inclusions fromBacillus thuringiensis.J. Mol. Biol. 14, 572–581.

    Article  PubMed  CAS  Google Scholar 

  84. Bulla, L. A., Jr., Kramer, K. J., and Davidson, L. I. (1977) Characterization of the entomocidal parasporal crystal ofBacillus thuringiensis.J. Bacteriol. 130, 375–383.

    PubMed  CAS  Google Scholar 

  85. Pfannenstiel, M. A., Muthukumar, G., Couche, G. A., and Nickerson, K. W. (1987) Amino sugars in the glycoprotein toxin fromBacillus thuringiensis subsp.israelensis.J. Bacteriol. 169, 796–801.

    PubMed  CAS  Google Scholar 

  86. Cooksey, K. E. (1971) The protein crystal toxin ofBacillus thuringiensis: biochemistry and mode of action, inMicrobial Control of Pests and Mites (Burges, H. D. and Hussey, N. W., eds.), Academic, New York, pp. 247–274.

    Google Scholar 

  87. Insell, J. P. and FitzJames, P. C. (1985) Composition and toxicity of the inclusions ofBacillus thuringiensis subsp.israelensis.Appl. Environ. Microbiol. 50, 56–62.

    PubMed  CAS  Google Scholar 

  88. Bhattacharya, M., Plantz, B. A., Swanson-Kobler, J. D., and Nickerson, K. W. (1993) Nonenzymatic glycosilation of Lepidopteran-activeBacillus thuringiensis protein crystals.Appl. Environ. Microbiol. 59, 2666–2672.

    PubMed  CAS  Google Scholar 

  89. Muthukumar, G. and Nickerson, K. W. (1987) The glycoprotein ofBacillus thuringiensis subsp.israelensis indicates a lectinlike receptor in the larval mosquito gut.Appl. Environ. Microbiol. 53, 2650–2655.

    PubMed  CAS  Google Scholar 

  90. Pfannenstiel, M. A., Couche, G. A., Muthukumar, G., and Nickerson, K. W. (1985) Stability of the larvicidal activity ofBacillus thuringiensis subsp.israelensis: amino acid modification and denaturants.Appl. Environ. Microbiol. 50, 1196–1199.

    PubMed  CAS  Google Scholar 

  91. Ghosh-Dastidar, P. and Nickerson, K. W. (1979) Interchain crosslinks in the entomocidalBacillus thuringiensis protein crystal.FEBS Lett. 108, 411–414.

    Article  Google Scholar 

  92. Nickerson, K. W. (1980) Structure and function of theBacillus thuringiensis protein crystal.Biotech. Bioeng. 22, 1305–1333.

    Article  CAS  Google Scholar 

  93. Aronson, A. I., Han, E-S., McGaughey, W., and Johnson, D. (1991) The solubility of inclusion proteins fromBacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects.Appl. Environ. Microbiol. 57, 981–986.

    PubMed  CAS  Google Scholar 

  94. Gringorten, J. L., Milne, R. E., Fast, P. G., Sohi, S. S., and van Frankenhuyzen, K. (1992) Suppression ofBacillus thuringiensis δ-endotoxin activity by low alkaline pH.J. Invertebr. Pathol. 60, 47–52.

    Article  CAS  Google Scholar 

  95. Choma, C. T., Surewicz, W. K., Carey, F. R., Pozsgay, M., and Kablan, H. (1990) Secondary structure of the entomocidal toxin fromBacillus thuringiensis subsp.kurstaki HD-73.J. Prot. Chem. 9, 87–94.

    Article  CAS  Google Scholar 

  96. Convents, D., Houssier, C., Lasters, I., and Lauwereys, M. (1990) TheBacillus thuringiensis δ-endotoxin. Evidence for a two domain structure of the minimal toxic fragment.J. Biol. Chem. 265, 1369–1375.

    PubMed  CAS  Google Scholar 

  97. Li, J., Carroll, J., and Ellar, D. J. (1991) Crystal structure of insecticidal δ-endotoxin fromBacillus thuringiensis at 2.5 Å resolution.Nature 353, 815–821.

    Article  PubMed  CAS  Google Scholar 

  98. Bulla, L. A., Jr., Bechtel, D. B., Kramer, K. J., Shethna, Y. I., and Aronson, A. I. (1980) Ultrastructure, physiology, and biochemistry ofBacillus thuringiensis.CRC Crit. Rev. Microbiol. 8, 147–204.

    Article  CAS  Google Scholar 

  99. Pfannenstiel, M. A., Cray, W. C., Couche, G. A., and Nickerson, K. W. (1990) Toxicity of protease-resistant domains from the delta-endotoxin ofBacillus thuringiensis subsp.israelensis inCulex quinquefasciatus andAedes aegypti bioassays.Appl. Environ. Microbiol. 56, 162–166.

    PubMed  CAS  Google Scholar 

  100. van Rie, J., Jansens, D., Höfte, H., Deghelee, D., and van Mellaert, H. (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity ofBacillus thuringiensis δ-endotoxins.Appl. Environ. Microbiol. 56, 1378–1385.

    PubMed  Google Scholar 

  101. Thomas, W. E. and Ellar, D. J. (1983) Mechanism of action ofBacillus thuringiensis varisraelensis insecticidal δ-endotoxin.FEBS Lett. 154, 362–368.

    Article  PubMed  CAS  Google Scholar 

  102. Chow, E., Singh, G. J. P., and Gill, S. S. (1989) Binding and aggregation of the 25 kDa toxin ofBacillus thuringiensis subsp.israelensis to cell membranes and alternation by monoclonal antibodies and amino acid modifiers.Appl. Environ. Microbiol. 55, 2779–2788.

    PubMed  CAS  Google Scholar 

  103. Dulmage, H. T. (1970) Production of the spore δ-endotoxin complex by variants ofBacillus thuringiensis in two fermentation media.J. Invertebr. Pathol. 16, 385–389.

    Article  PubMed  CAS  Google Scholar 

  104. Singer, S., Goodman, N. S., and Rogoff, M. H. (1966) Defined media for the study of bacilli pathogenic to insects.Ann. NY Acad. Sci. 139, 16–23.

    Article  PubMed  CAS  Google Scholar 

  105. Dubois, N. R. (1968) Laboratory batch production ofBacillus thuringiensis spores and crystals.Appl. Microbiol. 16, 1098, 1099.

    PubMed  CAS  Google Scholar 

  106. Nickerson, K. W. and Bulla, L. A., Jr. (1974) Physiology of spore forming bacteria associated with insects: minimal nutritional requirements for growth, sporulation, and parasporal crystal formation ofBacillus thuringiensis.Appl. Microbiol. 28, 124–128.

    PubMed  CAS  Google Scholar 

  107. Rajalakshmi, S. and Shethna, Y. I. (1977) The effect of amino acids on growth, sporulation and crystal formation inBacillus thuringiensis varthuringiensis.J. Indian Inst. Sci. 59, 169–176.

    CAS  Google Scholar 

  108. Rajakashmi, S. and Shethna, Y. I. (1980) Spore and crystal formation inBacillus thuringiensis varthuringiensis during growth in cystine and cysteine.Bioscience 2, 321–328.

    Article  Google Scholar 

  109. Avignone Rossa, C., Arcas, J. A., Yantorno, O. M., and Ertola, R. J. (1990) Organic and inorganic nitrogen source ratio effects onBacillus thuringiensis varisraelensis δ-endotoxin.World J. Microbiol. Biotechnol. 6, 27–31.

    Article  Google Scholar 

  110. Priest, F. G. and Sharp, R. J. (1989) Fermentation of bacilli, inFermentation Process Development of Industrial Microorganisms (Neway, J. O., ed.), Dekker, New York, pp. 73–132.

    Google Scholar 

  111. Scherrer, P., Lüthy, P., and Trumpi, B. (1973) Production of δ-endotoxin byBacillus thuringiensis as a function of glucose concentrations.Appl. Microbiol. 25, 644–646.

    PubMed  CAS  Google Scholar 

  112. Pearson, D. and Ward, O. P. (1988) Bioinsecticide activity, bacterial cell lysis, and proteolytic activity in cultures ofBacillus thuringiensis subsp.israelensis.J. Appl. Bacteriol. 65, 195–202.

    Google Scholar 

  113. Pearson, D. and Ward, O. P. (1988) Effect of culture conditions on growth and sporulation ofBacillus thuringiensis subsp.israelensis and development of media for production of the protein crystal endotoxin.Biotechnol. Lett. 10, 451–456.

    Article  CAS  Google Scholar 

  114. Sakharova, Z. V., Rabotnova, I. L., and Khovrychev, M. P. (1989) Growth and spore formation inBacillus thuringiensis at high substrate concentrations.Mikrobiologiya (engl. transl.) 57, 794–797.

    Google Scholar 

  115. Mummigatti, S. G. and Raghunathan, N. (1990) Influence of media composition on the production of δ-endotoxin byBacillus thuringiensis varthuringiensis.J. Invertebr. Pathol. 55, 147–151.

    Article  PubMed  CAS  Google Scholar 

  116. Salama, H. S., Foda, M. S., Dulmage, H. T., and El-Sharaby, A. (1983) Novel fermentation media for production of δ-endotoxins fromBacillus thuringiensis.J. Invertebr. Pathol. 41, 8–19.

    Article  Google Scholar 

  117. Salama, H. S., Foda, M. S., Selim, M. H., and El-Sharaby, A. (1983) Utilization of fodder yeast and agro-industrial byproducts in production of spores and biologically active endotoxins fromBacillus thuringiensis.Zbl. Mikrobiol. 138, 553–563.

    CAS  Google Scholar 

  118. Abdel-Hameed, A., Carlberg, G., and El-Tayeb, O. M. (1990) Studies onBacillus thuringiensis H-14 strains isolated in Egypt—III. Selection of media for δ-endotoxin production.World J. Microbiol. Biotechnol. 6, 313–317.

    Article  Google Scholar 

  119. Abdel-Hameed, A., Carlberg, G., and El-Tayeb, O. M. (1991) Studies onBacillus thuringiensis H-14 strains isolated in Egypt—IV. Characterization of fermentation conditions for δ-endotoxin production.World J. Microbiol. Biotechnol. 7, 231–236.

    Article  CAS  Google Scholar 

  120. Sakharova, Z. V., Ignatenko, Yu. N., Khovrychev, M. P., Lykov, V. P., Rabotnova, I. L., and Shevtsov, V. V. (1984) Sporulation and crystal formation inBacillus thuringiensis with growth limitation via the nutrient sources.Mikrobiologiya (Engl. transl.) 53, 221–227.

    Article  Google Scholar 

  121. Goldberg, I., Sneh, B., Battat, E., and Klein, D. (1980) Optimization of a medium for a high yield preparation ofBacillus thuringiensis effective against the egyptian cotton leaf wormSpodoptera littoralis Boisd.Biotechnol. Lett. 2, 419–426.

    Article  CAS  Google Scholar 

  122. Smith, R. A. (1982) Effect of strain and medium variation on mosquito toxin production byBacillus thuringiensis varisraelensis.Can. J. Microbiol. 28, 1089–1092.

    Article  PubMed  CAS  Google Scholar 

  123. Faloci, M. M., Yantorno, O. M., Marino, H. A., Arcas, J. A., and Ertola, R. J. (1990) Effect of the media composition on the growth parameters and biological properties ofBacillus thuringiensis varisraelensis δ-endotoxin.World J. Microbiol. Biotechnol. 6, 32–38.

    Article  CAS  Google Scholar 

  124. Foda, M. S., Salama, H. S., and Selim, M. (1985) Factors affecting growth physiology ofBacillus thuringiensis.Appl. Microbiol. Biotechnol. 22, 50–52.

    Article  CAS  Google Scholar 

  125. Wakisaka, Y., Masaki, E., and Nishimoto, Y. (1982) Formation of crystalline δ-endotoxin or poly-β-hydroxybutyric acid granules by asporogenous mutants ofBacillus thuringiensis.Appl. Environ. Microbiol. 43, 1473–1480.

    PubMed  CAS  Google Scholar 

  126. Wakisaka, Y., Masaki, E., Koizumi, K., Nishimoto, Y., Endo, Y., Nishimura, S., and Nishiitsutsuji-Uwo, J. (1982) AsporogenousBacillus thuringiensis mutant producing high yields of δ-endotoxin.Appl. Environ. Microbiol. 43, 1498–1500.

    PubMed  CAS  Google Scholar 

  127. Arcas, J., Yantorno, O. M., Arrarás, E., and Ertola, R. J. (1984) A new medium for growth and δ-endotoxin production byBacillus thuringiensis varkurstaki.Biotechnol. Lett. 6, 405–410.

    Article  Google Scholar 

  128. Pirt, S. J. (1975)Principles of Microbe and Cell Cultivation. Blackwell Scientific. London.

    Google Scholar 

  129. Sakharova, Z. V., Ignatenko, Yu. N., Shchul’ts, F., Khovrychev, M. P., and Rabotnova, I. L. (1985) Kinetics of the growth and development ofBacillus thuringiensis during batch culturing.Mikrobiologiya (Engl. transl.) 54, 483–488.

    Google Scholar 

  130. Arcas, J., Yantorno, O. M., and Ertola, R. J. (1987) Effect of high concentration of nutrients onBacillus thuringiensis cultures.Biotechnol. Lett. 9, 105–110.

    Article  CAS  Google Scholar 

  131. Avignone Rossa, C., Arcas, J., and Mignone, C. F. (1992)Bacillus thuringiensis growth, sporulation and δ-endotoxin production in oxygen limited and nonlimited cultures.World J. Microbiol. Biotechnol. 8, 301–304.

    Article  CAS  Google Scholar 

  132. Moraes, I. O., Santana, M. H. A., and Hokka, C. (1980) The influence of oxygen concentration on microbial insecticide production, inAdvances in Biotechnology, vol. 2 (Moo-Young, M., ed.), Proceedings of the 6th International Fermentation Symposium, London, Canada, pp. 75–79.

  133. Bravo, A., Quintero, R., Díaz, C., Martínez, A., and Soberón, M. (1993) Efficiency of insecticidal crystal protein production in aBacillus thuringiensis mutant with derepressed expression of the terminal oxidase aa3 during sporulation.Appl. Microbiol. Biotechnol. 39, 558–562.

    Article  CAS  Google Scholar 

  134. Holmberg, A., Sievanen, R., and Carlberg, G. (1980) Fermentation ofBacillus thuringiensis for exotoxin production: Process analysis study.Biotechnol. Bioeng. 22, 1707–1724.

    Article  CAS  Google Scholar 

  135. Dawes, I. W. and Thornley, J. H. M. (1970) Sporulation inBacillus subtilis. Theoretical and experimental studies in continuous culture systems.J. Gen. Microbiol. 62, 49–66.

    PubMed  CAS  Google Scholar 

  136. Stahly, D. P., Dingman, D. W., Bulla, L. A., Jr., and Aronson, A. I. (1978) Possible origin and function of the parasporal crystals inBacillus thuringiensis.Biochem. Biophys. Res. Commun. 84, 581–588.

    Article  PubMed  CAS  Google Scholar 

  137. Monro, R. E. (1961) Protein turnover and the formation of protein inclusions during sporulation ofBacillus thuringiensis.Biochem. J. 81, 225–232.

    PubMed  CAS  Google Scholar 

  138. Freiman, V. B. and Chupin, A. A. (1973) Aspects of continuous cultivation of spore-forming microbes from the groupBacillus thuringiensis.Biotechnol. Bioeng. Symp. No. 4, 259–265.

    Google Scholar 

  139. Schulz, V., Schorcht, R., Ignatenko, Yu. N., Sakharova, Z. V., and Khovrychev, M. P. (1985) Modellgestütze optimierung der kontinuierlichen fermentation von δ-endotoxin.Studia Biophys. 107, 43–51.

    CAS  Google Scholar 

  140. Kang, B. C., Lee, S. Y., and Chang, H. N. (1993) Production ofBacillus thuringiensis spores in total cell retention culture and two-stage continuous culture using an internal ceramic filter system.Biotechnol. Bioeng. 42, 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  141. Dreier, P., Brauhart, I., Küng, W., and Moser, A. (1990) Continuous processing ofBacillus thuringiensis, inProceedings from the Fifth European Congress on Biotechnology (Christiansen, C., Munck, L., and Villadsen, J., eds.), Copenhagen, July 8–13, pp. 142–145.

  142. Moser, A. (1991) Tubular bioreactors: case study of bioreactor performance for industrial production and scientific research.Biotechnol. Bioeng. 37, 1054–1065.

    Article  CAS  PubMed  Google Scholar 

  143. Boudreaux, D. P. and Srinivasan, V. R. (1981) A continuous culture study of growth ofBacillus cereus T.J. Gen. Microbiol. 122, 129–136.

    CAS  Google Scholar 

  144. Sachidanandham, R. and Jayaraman, K. (1993) Formation of spontaneous asporogenic variants ofBacillus thuringiensis subsp.galleriae in continuous cultures.Appl. Microbiol. Biotechnol. 40, 504–507.

    Article  CAS  Google Scholar 

  145. Kang, B. C., Lee, S. Y., and Chang, H. N. (1992) Enhanced spore production ofBacillus thuringiensis by fed-batch culture.Biotechnol. Lett. 14, 721–726.

    Article  Google Scholar 

  146. Avignone Rossa, C. and Mignone, C. F. (1993) δ-endotoxin activity and spore production in batch and fed-batch cultures ofBacillus thuringiensis.Biotechnol. Lett. 15, 295–300.

    Article  CAS  Google Scholar 

  147. Shimizu, M., Iijima, S., and Kobayashi, T. (1992) Production of insecticidal protein ofBacillus thuringiensis by cultivation of recombinantEscherichia coli.J. Ferment. Bioeng. 74, 163–168.

    Article  CAS  Google Scholar 

  148. Cayuela, C., Kai, K., Park, Y. S., Iijima, S., and Kobayashi, T. (1993) Insecticide production by recombinantBacillus subtilis 1A96 in fed-batch culture with control of glucose concentration.J. Ferment. Bioeng. 75, 383–386.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avignone-Rossa, C., Mignone, C.F. Bacillus thuringiensis growth and toxicity. Mol Biotechnol 4, 55–71 (1995). https://doi.org/10.1007/BF02907471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02907471

Index Entries

Navigation