Skip to main content
Log in

Prostate Cancer Old Problems and New Approaches

Part II. Diagnostic and Prognostic Markers, Pathology and Biological Aspects

  • Seminar
  • Published:
Pathology & Oncology Research

Abstract

Diagnostic and prognostic markers for prostatic cancer (PCa) include conventional protein markers (e.g., PAP, PSA, PSMA, PIP, OA-519, Ki-67, PCNA, TF, collagenase, and TIMP 1), angiogenesis indicator (e.g., factor VIII), neuroendocrine differentiation status, adhesion molecules (E-cadherin, integrin), bone matrix degrading products (e.g., ICPT), as well as molecular markers (e.g., PSA, PSMA, p53, 12LOX, and MSI). Currently, only PSA is used clinically for early diagnosis and monitoring of PCa. The histological differential diagnosis of prostatic adenocarcinoma includes normal tissues such as Cowper’s gland, Paraganglion tissue and seminal vesicle or ejaculatory duct as well as pathological conditions such as atypical adenomatous hyperplasia, atrophy, basal cell hyperplasia and sclerosing adenosis. A common PCa is characterized by a remarkable heterogeneity in terms of its differentiation, microscopic growth patterns and biological aggressiveness. Most PCa are multifocal with signi ficant variations in tumor grade between anatomically separated tumor foci. The Gleason grading system which recognizes five major grades defined by patterns of neoplastic growth has gained almost uniform acceptance. In predicting the biologic behavior of PCa clinical and pathological stages are used as the major prognostic indicators. Among the cell proliferation and death regulators androgens are critical survival factors for normal prostate epithelial cells as well as for the androgen-dependent human prostatic cancer cells. The androgen ablation has been shown to increase the apoptotic index in prostatic cancer patients and castration also promotes apoptotic death of human prostate carcinoma grown in mice. The progression of PCa, similarly to other malignancies, is a multistep process, accompanied by genetic and epigenetic changes, involving phenomenons as adhesion, invasion and angiogenesis (without prostate specific features).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostrowski WS, Kurie R: Human prostatic acid-phosphatase- sclected properties and practical applications. Clin Chini Acta 226:121–129,1994.

    Article  CAS  Google Scholar 

  2. Sharief FS, Lee H, Leuderman MM et al: Human prostatic acid phosphatase: cDNA cloning, gene mapping and protein sequence homology with lysosomal acid phosphatase. Biochem Biophys Res Commun 160:79–86. 1988.

    Article  Google Scholar 

  3. Lee CT, Oesterling JE: Diagnostic markers of prostate-cancer- utility of prostate-specific antigen in diagnosis and staging. Semin Surg Oncol 11:23–35. 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Yam LT, Janckila AJ, Lam KW, et al: Immunohistoehemistry of prostatic acid phosphatase. Prostate 2:97–107. 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Arnbruster DA: Prostate-specific antigen: biochemistry analytical methods and clinical application. Clin Chem 39:181–195. 1993.

    Google Scholar 

  6. Gillatt D, Reynard JM: What is the normal range for prostate- specific antigen- use of a receiver operating characteristic curve to evaluate a serum marker. Brit. J Urol 75:341–346. 1995.

    PubMed  CAS  Google Scholar 

  7. Vihko P, Kontturi M, Lukkarinen O, et al: Screening for carcinoma of the prostate. Rectal examination, and enzymatic and radioimmunologic measurements of serum acid phosphatase compared. Cancer 56:173. 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Watt WWK, Lee P-J. M Timkulu T, et al: Human prostate- specific antigen: structural and functional similarity with serine proteases. Proc Natl Acad Sci USA 83:3166–3170. 1986.

    Article  PubMed  CAS  Google Scholar 

  9. Lilja H: A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J Clin Invest 76:1899–1903. 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Oesterling JE: Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol 145:907–923. 1991.

    PubMed  CAS  Google Scholar 

  11. Breul J. Pickl U, Hartung: Prostate specific antigen in urine and saliva. J Urol 149:302A. 1993.

    Google Scholar 

  12. Erazier HA, Humphrey PA, Burchette JL, et al: Immunoreactive prostatic specific antigen in male periurethral glands. J Urol 147:246–248. 1992.

    Google Scholar 

  13. Kamoshida S, Tsutsumi Y: Extraproslatic localization of prostate acid phosphatase and prostate-specific antigen: distribution in cloacogenic glandular epithelium and sex- dependent expression in human anal gland. Hum Pathol 21:1108–11011, 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Yu H, Diamandis LP: Prostate-specific antigen in milk of lactating women. Clin Chem 41:54–58, 1995.

    PubMed  CAS  Google Scholar 

  15. Yu H, Diamandis EP: Measurement of serum prostate specific antigen levels in women and in prostatectomized men with an ultrasensitive immunoassay technique. J Urol 153:1004–1008. 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Papotti M, Paties Peveri V, et al: Immunocytochemical detection of prostate specific antigen (PSA) in skin adnexal and breast tissues and tumors. Basic Appl Histochem 33:25–29, 1989.

    PubMed  CAS  Google Scholar 

  17. Van Krieken JH: Prostate marker immunoreactivity in salivary gland neoplasms. Am J Surg Pathol 17:410–414. 1993.

    Article  PubMed  Google Scholar 

  18. Pummer Wirnserger G, Purstner P, et al: False positive prostate specific antigen values in the sera of women with renal cell carcinoma. J Urol 148:21–23, 1992.

    PubMed  CAS  Google Scholar 

  19. Smith MR, Biggar S, Hussain M: Prostate-specific antigen messenger RNA is expressed in non-prostate cells: implications for detection of micrometastases. Cancer Res 55:2640–2644, 1994.

    Google Scholar 

  20. Yu H, Giai M, Diamandis EP, Katsaros D, et al: Prostate specific antigen is a new favorable prognostic indicator for women with breast cancer. Cancer Res 55:2104–2110, 1995.

    PubMed  CAS  Google Scholar 

  21. Djavan B, Keffer JH, Molberg K.et al: False-positive serum prostate-specific antigen values in a patient with non- Hodgkin-lymphoma of the kidney. Urol 45:875–878. 1995.

    Article  PubMed  CAS  Google Scholar 

  22. Wu JT: Assay for prostate specific antigen (PSA): Problems and possible solutions. J Clin Lab Anal 8:51–62. 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Lankford SP, Peters KL, Elser RC: Potential effects of age specific reference range for serum prostate specific antigen. Furo Urol 27:182–186. 1995.

    CAS  Google Scholar 

  24. Brawer MK, Chetner MP, Beatie J, et al: Screening for prostate carcinoma with prostate specific antigen. J Urol 147:841–845, 1992.

    PubMed  CAS  Google Scholar 

  25. Stamey TA, Yang N.Hay AR, et al: Prostate specific antigen as a serum marker for adenocarcinoma of the prostate. N Fngl J Med 317:909, 1987.

    CAS  Google Scholar 

  26. Mueller EJ. Coventry J, Desmond PM, et al: Relative performance characteristics of prostate specific antigen and prostatic specific antigen density for the diagnosis of careinoma of the prostate. Urol Oncol 1:84–87. 1995.

    Google Scholar 

  27. Carterer HB, Pearson JD, Matter EJ, et al: Longitudinal evaluation of prostate specific antigen levels in men with and without prostate disease. JAMA 267:2215–2220. 1992.

    Article  Google Scholar 

  28. Akimoto S, Masai M, Akakurd K. et al: Tumor marker doubling time in patients with prosiate cancer determination of prostate specific antigen and prostatic acid phosphatase doubling time. Eur Urol 27:207–212. 1995.

    PubMed  CAS  Google Scholar 

  29. Chrisiensson A, Bjork T, Nilsson O, et al: Serum prostate- specific antigen complexed to alpha I anuchymotrypsm as an indicator of prostatic canecr. J Urol. 150:100–105. 1993

    Google Scholar 

  30. Horoszewiez JS.Kawinski E.Murphy GP: Monoclonal antibodies to a new antigenic marker in epithelial cells and serum of prostatic cancer patients. Anticancer Res 7:927–936. 1987.

    Google Scholar 

  31. Wright GL Jr.,Haley Beckett ML, et al: Expression of prostate specific membrane antigen in normal benign and malignant prostate tissues. Urol Oncol 1:18–28, 1995.

    Google Scholar 

  32. Cama Olsson CA, Raff AJ, et al: Molecular staging of prostate cancer. II. a comparison of the applications of an enhanced reverse transcriptase polymerase chain reaction assay for prostate specific antigen versus prostate specific antigen. J Urol 153:1373–1378. 1995.

    Article  Google Scholar 

  33. Israeli RS, Powell CT, Corr JG, et al: Expression of the prostate specific membrane antigen. Cancer Res 54:1807–1811.1994.

    PubMed  CAS  Google Scholar 

  34. Israeli RS, Powell CT, Fair WR, et al: Molecular cloning of a complementary DNA encoding a prostate specific membrane antigen. Cancer Res 53:227–230. 1993.

    PubMed  CAS  Google Scholar 

  35. Su IS, Huang I-P. Rair WR, et al: Alternatively spliced variants of prostate specific membrane antigen RNA: ratio of expression as a potential measurement of progression. Cancer Res 55:1441–1443. 1995.

    PubMed  CAS  Google Scholar 

  36. Babaian RJ, Sayer J, Podoloff DA, et al: Radioimmunoscintigraphy of pelvie lymph-nodes with indium-labeled monoclonal-antibody cyt-356. J Urol 152:1952–1955, 1994.

    PubMed  CAS  Google Scholar 

  37. Teni TR, Sheth AR, Kamath MR, et al: Serum and urinary prostatic inhibin-like peptide in benign prostatic hyperplasia and carcinoma of prostate. Cancer Letters 43:9–14, 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Dube JY, Pelletier G, Gagnon P, et al: Immunohistochemieal localization of a prostatic secretory protein of 94 amino acids in normal prostatic tissue, in primary prostatic tumors and in their metastases. J Urol 138:883–7. 1987.

    PubMed  CAS  Google Scholar 

  39. Grade SV, Sheth AR, Porter AT, et al: Effect of prostatic inhibin peptide (PIP) on prostate cancer cell growth in vitro and in vivo. Prostate 22:225–233. 1993.

    Article  Google Scholar 

  40. Mundle SD, Sheth NA: Suppression of DNA synthesis and induction of apoptosis in rat prostate by human seminal plasma inhibin (HSPI). Cell Biol Int 17:587–594. 1993.

    Article  PubMed  CAS  Google Scholar 

  41. Xuan JW, Chin JL, Guo Y, et al: Alternative splicing of PSP94 (prostatic secretory protein of 94 amino acids) mRNA in prostate tissue. Oncogene (In press), 1995.

  42. Foti AG, Cooper JR. Hemhmann H, et al: Detection of prostatic cancer by solidphase radioimmunoassay of serum prostatic acid phosphatase. N Engl J Med 297:1357–1361. 1977.

    PubMed  CAS  Google Scholar 

  43. Bruce AW, Mahan DE: Acid phosphatase: its estimation and clinical significance. In: Blandy JP, Lytton B (eds) The Prostate (BIMR Urology). Butterworth, Surrey pp 147–162, 1986.

    Google Scholar 

  44. Sakai H, Yasuo Y, Minami Y, et al: Prostate specific antigen and prostatic acid phosphatase immunoreactivity as prognostic indicators of advance prostatic canrcinoma. J Urol 149:1020–1023.1993.

    PubMed  CAS  Google Scholar 

  45. Oesterling JE, Brendler Epstein JI.et al: Correlation of clinical stage serum prostatic acid phosphatase and preoperative (ileason grade with final pathologic stage in 275 patients with clinically localized adenocarcinoma of the prostate. J Urol 138:92–97. 1987

    PubMed  CAS  Google Scholar 

  46. Trump. BE, Berezesky. IK: Calcium-mediated cell injury and cell death. FASEBJ 9:219–228. 1995.

    CAS  Google Scholar 

  47. Burnett AL, Chan DW, Brendler CB.et al: The value of serum enzymatic acid phosphatase in the staging of localized prostate cancer. J Urol 148:1832- 1834. 1992.

    PubMed  CAS  Google Scholar 

  48. Kabalin JN, McNeal JF, Joimstone IM, et al. Serum prostatic specific antigen and the biologie progression of prostate cancer. Urol 46:65–70. 1995.

    Article  PubMed  CAS  Google Scholar 

  49. Panili AW. Yoo J, Carter HB, et al: The Use of Prostatic Specific Antigen. Clinical Stage and Gleason Score to Predict Pathological Stage in Men with Localized Prostate Cancer. J Urol 150:110–114, 1993.

    Google Scholar 

  50. Blackledge GRP, Lowery K: Role of prostate-specific antigen as a predictor of outcome in prostate cancer. Prostate 5:34–38. 1994.

    Article  CAS  Google Scholar 

  51. Katz A, Olsson C, Raffo A, et al: Molecular staging of prostate cancer with the use of an enhanced reverse transcriptase-PCR assay. Urology 43:765–775. 1994.

    Article  PubMed  CAS  Google Scholar 

  52. Moreno JG.Croce CM, Riseher R, et al: Detection of hematogenous mierometastasis in patients with prostate cancer. Cancer Res 52:6110–6112, 1992.

    PubMed  CAS  Google Scholar 

  53. Deguchi T, Doi P, Ehara H, et al: Detection of micrometastatic prostate cancer cells in lymph nodes by reverse transcritpase polymerase chain reaction. Cancer Res 53:5350–5354. 1993.

    PubMed  CAS  Google Scholar 

  54. Liu B, Maher RJ, Hannun YA. et al: 1 2(S)-HETE enhancement of prosiate tumor cell invasion: Selective role of PKCa. J Natl Cancer Inst 86:1145–1151. 1994.

    Article  PubMed  CAS  Google Scholar 

  55. Tanng DG, Honn KV: 12-Lipoxygenase. 12(S)-HETH, and cancer metastasis. Annals NY Acad Sci 722:199–215, 1994.

    Article  Google Scholar 

  56. Gao X, Grignon D, Chbihi T, et al: Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urol 46:227–237. 1995.

    Article  PubMed  CAS  Google Scholar 

  57. Gao X, Zaeharek A, Grignon DJ, et al: Localization of potential tumor suppressor loci to a <2 Mb region on chromosome 17q in human prostate cancer. Oncogene 11:1241–1247, 1995.

    PubMed  CAS  Google Scholar 

  58. Chi S-G, de VereWhite RW, Meyers FJ, et al: p53 in prostate cancer: frequent expressed transition mutations. J Natl Cancer Inst 86:926–933. 1994.

    Article  PubMed  CAS  Google Scholar 

  59. Van Veldhuizen PJ, Sadasivan R, Garcia F.et al: Mutant p53 expression in prostate carcinoma. Prostate 22:23–30. 1993.

    Article  PubMed  Google Scholar 

  60. Chen YQ, Gao X, Grignon D, et al: Multiple mechanisms of p53 inactivation in human prostate cancer. Cancer Mol Biol 1:357–367. 1994.

    CAS  Google Scholar 

  61. Gao X, Chen YQ, Wu N, et al: Somatic mutations of the WAF1/CIP1 gene in primary prostate cancer. Oncogene 11:1395–1398, 1995.

    PubMed  CAS  Google Scholar 

  62. Voeller HJ, Sugars LY, Pretlow T, et al: p53 oncogene mutations in human prostatic-cancer specimens. J. Urol 151:192–495,1994.

    Google Scholar 

  63. Zhau HE, Zhao LS, Chung LWK, et al: Comparative studies of prostate cancers among united states, Chinese, and Japanese patients: characterization of histopathology, tumor angiogenesis neuroendocrine factors, and p53 protein accumulations. Urol Oncol 1:51–63, 1995.

    Google Scholar 

  64. Bookstein R, MacGrogan D, Hilsenheck SG, et al: P53 is mutated in a subset of advanced-stage prostate cancer. Cancer Res. 53:3369–3373, 1993.

    PubMed  CAS  Google Scholar 

  65. Effert PJ, McCoy RH, Walther PJ, et al: p53 gene alterations in human prostate carcinoma.J Urol 150:257–261. 1993.

    PubMed  CAS  Google Scholar 

  66. Navone NM, Troncoso P, Pisters LL, et al: p53 protein accumulation an gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85:1657–1669. 1993.

    Article  PubMed  CAS  Google Scholar 

  67. Kubota Y, Shuin T, Uemura H, et al: Tumor suppressor gene p53 mutations in human prostate cancer. Prostate 27:18–24. 1995.

    Article  PubMed  CAS  Google Scholar 

  68. Gao X, Wu N, Grignon D, Zacharek A, et al: High frequency of mutator phenotype in human prostatic adenocarcinoma. Oncogene: 2999–3003. 1994.

  69. Fishel R, Kay-Lescoe M, Rao MRS, et al: The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038, 1993.

    Article  PubMed  CAS  Google Scholar 

  70. Leach FS, Nicolaides NC, Paradopoulos N, et al: Mutations of a MutS homolog in hereditary nonpolyposis colorectal-cancer. Cell 75:1215–1225. 1993.

    Article  PubMed  CAS  Google Scholar 

  71. Nicolaides NC, Papadopoulos N, Liu B, et al: Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature (Lond.) 371:75–80. 1994.

    Article  CAS  Google Scholar 

  72. Uehida T, Wada C, Wang C, et al: Microsatellite instability in prostate cancer. Oncogene 10:1019–1022. 1995.

    Google Scholar 

  73. Shurbaji MS, Kuhajda FP, Pasternack GR, et al: Expression of oncogenic antigen 519 (OA-519) in prostate cancer is a potential prognostic indicatior. Am J Pathol 97:686–691, 1992.

    CAS  Google Scholar 

  74. Kuhajda FP, Jenner K, Wood FD, et al: Fatty acid synthesis: a potential selective target for antineioplastic therapy. Proc Natl Acad Sci USA 91:6379–6383, 1994.

    Article  PubMed  CAS  Google Scholar 

  75. Epstein JI, Carmichael M, Partin AW: OA-519 (fatty acid synthase) as an independent predictor of pathologic stage in adenocarcinoma of the prostate. Urol 45:81–86. 1995.

    Article  PubMed  CAS  Google Scholar 

  76. Cher ML. Chew K, Rosenau W, et al: Cellular proliferation in prostatic adenocarcinoma as assessed by bromodeoxyuridine uptake and Ki-67 and PCNA expression. Prostate 26:87–93. 1995.

    Article  PubMed  CAS  Google Scholar 

  77. Harper ME, Goddard L, Wilson DW, et al: Pathological and clinical associations of Ki-67 defined growth fractions in human prostatic carcinoma. Prostate 21:75–84, 1992.

    Article  PubMed  CAS  Google Scholar 

  78. Carroll PR, Waldman FM, Rosenau W, et al: Cell proliferation in prostatic adenocarcinoma: in vitro measurement by 5-bromodeoxyuridine incorporation and proliferating cell nuclear antigen expression. J Urol 149:403–407, 1993.

    PubMed  CAS  Google Scholar 

  79. Harper ME, Glynne-Jones E, Goddard L, et al: Relationship of proliferating cell nuclear antigen (PCNA) in prostatic carcinomas to various clinical paramentes. Prostate 20:243–253, 1992.

    Article  PubMed  CAS  Google Scholar 

  80. Giroldi LA, Schalken JA: Decreased expression of the intrecellular adhesion molecule E-cadherin in prostate cancer: biological significance and clinical implications. Cancer and Metastasis Reviews 12:29–37, 1993.

    Article  PubMed  CAS  Google Scholar 

  81. Bussemakers MJG, van Moorselaar RJA, Giroldi LA, et al: Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res 52:2916–2922, 1992.

    PubMed  CAS  Google Scholar 

  82. Umbas R. Schalken JA, Aalders TW, et al: Expression of the cellular adhesion molecule, E-cadherin, is reduced or absent in high grade prostate cancer. Cancer Res. 52:5104–5109. 1992.

    PubMed  CAS  Google Scholar 

  83. Umbas R, Isaacs WB, Bringuier PP, et al: Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res. 54:3929–3933, 1994.

    PubMed  CAS  Google Scholar 

  84. Weidner N, Carroll PR, Flax J, et al: Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Amer J Pathology 143:401–409. 1993.

    CAS  Google Scholar 

  85. Di Sant’ Agnese PA: Neuroendocrine differentiation in human prostatic carcinoma. Hum Pathol 23:287–296, 1992.

    Article  CAS  Google Scholar 

  86. Kadmon D, Thompson TC, Lynch GR, et al: Elevated plasma chromogranin-A concentrations in prostatic carcinoma. J Urol 358–361, 1991.

  87. Cohen P, Peehl DM. Stanley TA. et al: Elevated levels of insulin-like growth factor-binding protein-2 in the serum of prostate cancer patients. J Clin Endocrinol Metabolism 76:1031–1035, 1993.

    Article  CAS  Google Scholar 

  88. Brozna JP: Cellular regulation of tissue factor. Blood Coag Fibrinol 1:415–426, 1990.

    Article  CAS  Google Scholar 

  89. Adamson AS. Francis JL. Witherow RO’N, et al: Urinary tissue factor levels in prostatic carcinoma: a potential marker of metastatic spread? Brit J Urol 71:587–592. 1993.

    PubMed  CAS  Google Scholar 

  90. Adamson AS, Luckert P, Pollard M, et al: Procoagulant activity may be a marker of the malignant phenotype in experimental prostate cancer. Brit J Cancer 69:286–290. 1994.

    PubMed  CAS  Google Scholar 

  91. Risteli J, Elonaa J. Niemi S, et al: Radioimmunoassay for the pyridinoline cross-linked carboxyterminal telopeptide of type 1 collagen: a new serum marker of bone collagen degradation. Clin Chem 39:635–640. 1993.

    PubMed  CAS  Google Scholar 

  92. Kylmala T, Tammela TLJ, Risteli L, et al: Type-I collagen degradation product (ICTP) gives information about the nature of bone metastases and has prognostic value in prostate cancer. Brit J Cancer 71:1061–1064, 1995.

    PubMed  CAS  Google Scholar 

  93. Liotta LA, Steeg PS, Stetler-Stevenson WG: Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 64:327–336, 1991.

    Article  PubMed  CAS  Google Scholar 

  94. Baker T, Tickle S, Wasan H. et al: Serum metalloproteinases and their inhibitors-markers for malignant potential. Brit J Cancer 70:506–512, 1994.

    PubMed  CAS  Google Scholar 

  95. Gleason DF: Histologic grading and clinical staging of prostatic adenocarcinoma. In Tannenbaum M: (ed): “Urologic Pathology: The Prostate.” Philadelphia: Lea & Febiger. 171–197, 1977.

    Google Scholar 

  96. Bostwick DG: Grading prostate cancer. Am J Clin Pathol 102(Suppl):538–556, 1994.

    Google Scholar 

  97. Gardner WA, Jr., Culberson DE: Atrophy and proliferation in the young adult prostate. J Urol 137:53–56. 1987.

    PubMed  Google Scholar 

  98. Terris MK, Haney DJ, Johnstone IM, et al: Prediction of prostate cancer volume using prostate-specific antigen levels, transrectal ultrasound, and systematic sextant biopsies. Urology 45:75–80, 1995.

    Article  PubMed  CAS  Google Scholar 

  99. Madsen EL: Painful bone metastases: Efficacy of radiotherapy assessed by the patient -a randomized trial comparing 4 Gy x 6 vs 10 Gy x 2. Int J Rad Oncol Biol Phys 9:1775–1779, 1983.

    CAS  Google Scholar 

  100. McNeal JE: Anatomy of the prostate: An historical survey of divergent views. The Prostate 1:3–13, 1980.

    Article  PubMed  CAS  Google Scholar 

  101. McNeal JE: Morphogenesis of prostatic carcinoma. Cancer 18:1659–1666, 1965.

    Article  PubMed  CAS  Google Scholar 

  102. Sakr WA, Grignon DJ, Visscher DW, et al: Evaluating the radical prostatectomy specimen: A protocol for establishing prognostic parameters and harvesting fresh tissue samples. J Urol Pathol 3:355–364, 1995.

    Google Scholar 

  103. Grignon DJ, Ro JY, Ordonez NG, et al: Basal cell hyperplasia, adenoid basal cell tumor, and adenoid cystic carcinoma of the prostate gland: An immunohistochemical study. Hum Pathol 19:1425–1433, 1988.

    Article  PubMed  CAS  Google Scholar 

  104. Grignon DJ, Hammond EH: College of American Pathologists Conference XXVI on clinical relevance of prognostic markers in solid tumors: Report of the prostate cancer working group. Arch Pathol Lab Med 119:1122–1126, 1995.

    PubMed  CAS  Google Scholar 

  105. Grignon DJ, Melley FMucinous metaplasia in the prostate gland. Am J Surg Pathol 17:287–290. 1993.

    Article  PubMed  CAS  Google Scholar 

  106. Kramer CE. Epstein JI: Nucleoli in low-grade prostate adenocarcinoma and adenosis. Hum Pathol 24:618–623. 1993.

    Article  PubMed  CAS  Google Scholar 

  107. Sakamoto N. Tsuneyoshi M. Enjoji M: Sclerosing adenosis of the prostate. Am J Surg Pathol 15:660–667. 1991.

    PubMed  CAS  Google Scholar 

  108. Kelemen PR.Buschmann RJ, Weisz-Carrington P: Nucleolar prominence as a diagnostic variable in prostatic carcinoma. Cancer 65:1017–1020, 1990.

    Article  PubMed  CAS  Google Scholar 

  109. Ohori M. Wheeler TM, Kattan MW, et al: Prognostic significance of positive surgical margins in radical prostatectomy specimens. J Urol 154:1818–1824. 1995.

    Article  PubMed  CAS  Google Scholar 

  110. Ohori M, Scardino PT, Lapin SL, et al: The mechanisms and prognostic significance of seminal vesicle involvement by prostate cancer. Am J Surg Pathol 17:1252–1261, 1993.

    Article  PubMed  CAS  Google Scholar 

  111. Epstein JI. Walsh PC, Carmichael M, et al: Pathologic and clinical findings to predict tumor extent of nonpalpable (stage Tle) prostate cancer. JAMA 271:368–374, 1994.

    Article  PubMed  CAS  Google Scholar 

  112. McNeal JE: Cancer volume and site of origin of adenocarcinoma in the prostate: Relationship to local and distant spread. Hum Pathol 23:258–266. 1992.

    Article  PubMed  CAS  Google Scholar 

  113. Gleason DF: Histological grading of prostate cancer. Hum Pathol 23:273–279, 1992.

    Article  PubMed  CAS  Google Scholar 

  114. Gaudin PB, Epstein JI: Adenosis of the prostate: Histologic features in needle biopsy specimens. Am J Surg Pathol 19:737–747, 1995.

    PubMed  CAS  Google Scholar 

  115. Schroder FH, Hermanek P, Fair WR, et al: The TNM classification of prostate cancer. The Prostate 4:129–138, 1992.

    Article  CAS  Google Scholar 

  116. Bostwick DG: Gleason grading of prostatic needle biopsies: Correlation with grade in 316 matched prostatectomies. Am J Surg Pathol 18:796–803, 1994.

    PubMed  CAS  Google Scholar 

  117. Grignon DJ, Sakr WA: Benign prostatic hyperplasia: Is it a premalignant lesion? In Vivo 8:415–418. 1994.

    PubMed  CAS  Google Scholar 

  118. Epstein JI: Diagnostic criteria of limited adenocarcinoma of the prostate on needle biopsy. Hum Pathol 26:223–229. 1995.

    Article  PubMed  CAS  Google Scholar 

  119. Ro JY, Grignon DJ, Troncoso P, et al: Mucin in prostatic adenocarcinoma. Semin Diagn Pathol 5:273–283. 1988.

    PubMed  CAS  Google Scholar 

  120. Bostwick DG.Graham SD, Jr., Napalkov P et al: Staging of early prostate cancer: A proposed tumor volume-based prognostic index. Urology 41:403–411. 1993.

    Article  PubMed  CAS  Google Scholar 

  121. Qian J. Bostwick DG: The extent and zonal location of prostatic intraepithelial neoplasia and atypical adenomatous hyperplasia: Relationship with carcinoma in radical prostatectomy specimens. Path Res Pract 191:860–867. 1995.

    PubMed  CAS  Google Scholar 

  122. Ro JY. Grignon DJ, Troncoso DJ, et al: Intraluminal crystalloids in whole-organ sections of prostate. The Prostate 13:233–239, 1988.

    Article  PubMed  CAS  Google Scholar 

  123. Vallancien G, Bochereau G, Wetzel O.et al: Influence of preoperative positive seminal vesicle biopsy on the staging of prostatic cancer. J Urol 152:1152–1156. 1994.

    PubMed  CAS  Google Scholar 

  124. Gleason DF: Atypical hyperplasia, benign hyperplasia, and well differentialed adenocarcinoma of the prostate. Am J Surg Pathol 9:53–67. 1985.

    Article  Google Scholar 

  125. Mostofi FK, Sesterhenn IA, Davis CJ, Jr.: Prostatic carcinoma: Problems in the interpretation of prostatic biopsies. Hum Pathol 23:223–241. 1992.

    Article  PubMed  CAS  Google Scholar 

  126. Bostwick DG, Myers RP, Oesterling, JE: Staging of prostate cancer. Semin Surg Oncol 10:60–72. 1994.

    Article  PubMed  CAS  Google Scholar 

  127. Catalona WJ, Stein AJ, Fair WR: Grading errors in prostatic needle biopsies: Relation to the accuracy of tumor grade in predicting pelvic lymph node metastases. J Urol 127:919–922, 1982.

    PubMed  CAS  Google Scholar 

  128. American Joint Committee on Cancer: Manual tor Staging of Cancer. Philadelphia. PA: Lipincott. 1992.

    Google Scholar 

  129. Murphy GP, Whitmore WF, Jr.: A report of the workshops of the current status of the histologic grading of prostate cancer. Cancer 44:1490–1494, 1979.

    Article  PubMed  CAS  Google Scholar 

  130. Villers A, McNeal JE, Freiha FS, et al: Multiple cancers in the prostate. Cancer 70:2313–2318, 1992.

    Article  PubMed  CAS  Google Scholar 

  131. Garnett JE. Oyasu R, Grayhack JT: The accuacy of diagnostic biopsy specimens in predicting tumor grades by gleason’s classification of radical prostatectomy specimens. J Urol 131:690–693, 1984.

    PubMed  CAS  Google Scholar 

  132. Srigley JR: Small-acinar patterns in the prostate gland with emphasis on atypical adenomatous hyperplasia and small-acinar carcinoma. Semin Diagn Pathol 5:254–272. 1988.

    PubMed  CAS  Google Scholar 

  133. Aihara M, Wheeler TM. Ohori M, et al: Heterogeneity of prostate cancer in radical prostatectomy specimens. Urology 43:60–66. 1994.

    Article  PubMed  CAS  Google Scholar 

  134. Bostwick DG, Srigley J, Grignon DJ, et al: Atypical adenomatous hyperplasia of the prostate: Morphologic criteria for its distinction from well-differentiated carcinoma. Hum Pathol 24:819–832. 1993.

    Article  PubMed  CAS  Google Scholar 

  135. Mills SE, Fowler JE, Jr.: Gleason histologic grading of prostatic carcinoma. Cancer 57:346–349, 1986.

    Article  PubMed  CAS  Google Scholar 

  136. Ayala AG, Ro JY, Babaian RJ, et al: The prostatic capsule: Does it exist? Am J Surg Pathol 13:21–27, 1989.

    Article  PubMed  CAS  Google Scholar 

  137. GrigDJ, Ro JY, Srigley JR, et al: Sclerosing adenosis of the prostate gland. Am J Surg Pathol 16:383–391, 1992.

    Google Scholar 

  138. Adolfsson J, Steineck G, Whitmore WF, Jr.: Recent results of management of palpable clinically localized prostate cancer. Cancer 72:310–322. 1993.

    Article  PubMed  CAS  Google Scholar 

  139. Pandey P, Fowler JE, Seaver LE, et al: Ultrasound guided seminal vesicle biopsies in men with suspected prostate cancer. J Urol 154:1798–1801. 1995.

    Article  PubMed  CAS  Google Scholar 

  140. Bhiestein DL, Bostwick DG, Bergstralh EJ, et al: Eliminating the need for bilateral pelvic lymphadenectomy in select patients with prostate cancer. J Urol 151:1315–1320, 1994.

    Google Scholar 

  141. McNeal JE: Origin and development of carcinoma in the prostate. Cancer 23:24–34. 1969.

    Article  PubMed  CAS  Google Scholar 

  142. Peller PA, Young DC, Marmaduke DP, et al: Sextant prostate biopsies: A histopathologic correlation with radical prostatectomy specimens. Cancer 75:530–538, 1995.

    Article  PubMed  CAS  Google Scholar 

  143. Majno G, Joris I: Apoplosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15, 1995.

    PubMed  CAS  Google Scholar 

  144. Cory S: Regulation of lymphoeyte survival by the bcl-2 gene family. Annu Rev Immunol 13:513–543. 1995.

    Article  PubMed  CAS  Google Scholar 

  145. Lynn WS. Wong PKY: Neuroimmunodegeneration: do neurons and T cells use common pathways for cell death? FASEB J 9:1147–1156. 1995.

    PubMed  CAS  Google Scholar 

  146. Hockenbery D: Defining apoptosis. Am J Pathol 146:16–19. 1995.

    PubMed  CAS  Google Scholar 

  147. Kroemer G, Petit P, Zamzami N, et al: The biochemistry of programmed cell death. FASEB J 9:1277–1287, 1995.

    PubMed  CAS  Google Scholar 

  148. Trump, BF, Berezesky, IK: Calcium-mediated cell injury and cell death. FASEB J 9:219–228, 1995.

    PubMed  CAS  Google Scholar 

  149. Gierstsen BT, Doskeland SO: Protein phosphorylation in apoptosis. Biochim Biophys Acta 1269:187–199. 1995.

    Article  Google Scholar 

  150. Tang DG, Chen Y, Honn KV: Essential role of arachidonate lipoxygenases in regulating cell survival and apoptosis. Proc Natl Acad Sci USA. 1996. in press.

  151. Evan GI, Brown L, Whyte M. et al: Apoptosis and the cell cycle. Curr Opinion Cell Biol 7: 825–834, 1995.

    Article  PubMed  CAS  Google Scholar 

  152. Korsmeyer, SJ. Yin. XM, Oltvai.ZN.et al: Reactive oxygen species and the regulation of cell death by the bcl-2 gene family. Biochim Biophys Acta 1271:63–66. 1995.

    PubMed  Google Scholar 

  153. Martin, SJ, Green, DR: Protease activation during apoptosis: Death by a thousand cuts? Cell 82:349–352, 1995.

    Article  PubMed  CAS  Google Scholar 

  154. Hoehner JC, Hedborg F, Wiklund HJ, et al: Cellular death in neuroblastoma: In situ correlation of apoplosis and bcl-2 expression. Int J Cancer 62:19–24, 1995.

    Article  PubMed  CAS  Google Scholar 

  155. Bronner MP, Culin C. Reed JC, et al: The bcl-2 proto-oncogene and the gastrointestinal epithelial tumor progression model. Am J Pathol 146:20–26, 1995.

    PubMed  CAS  Google Scholar 

  156. Mooy CM, Luyten GPM, de Jong PTVM, et al: Immunohistochemical and prognostic analysis of apoptosis and proliferation in uveal melanoma. Am J Pathol 147:1097–1104, 1995.

    PubMed  CAS  Google Scholar 

  157. Bardeesy N, Beckwith JB, Pelletier J: Clonal expansion and attenuated apoptosis in Wilms’ tumors are associated with p53 gene mutations. Cancer Res 55:215–219, 1995.

    PubMed  CAS  Google Scholar 

  158. Sinicrope FA, Ruan SB, Claery KR, et al: bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res 55:237–241, 1995.

    PubMed  CAS  Google Scholar 

  159. Liang XH, Mungal S, Ayseue A, et al: Bcl-2 protooncogene expression in cervical carcinoma cell lines containing inactive p53. J Cell Biochem 57:509–521, 1995.

    Article  PubMed  CAS  Google Scholar 

  160. Fesus L, Szondy Z. Uray I: Probing the molecular program of apoptosis by cancer chemopreventive agents. J Cell Biochem 22:151–161, 1995.

    Article  CAS  Google Scholar 

  161. Lotan R: Retinoids and apoptosis: Implications for cancer chemoprevention and therapy. J Natl Cancer Inst 87:1655–1657, 1995.

    Article  PubMed  CAS  Google Scholar 

  162. van Zandwijk N: N-acetylcysteine (NAC) and glutathione (GSH): Antioxidant and chemopreventive properties, with special reference to lung cancer. J Cell Biochem 22:24–32, 1995.

    Article  Google Scholar 

  163. Issacs JT, Lundmo PI, Berges R, et al: Androgen regulation of programmed death of normal and malignant prostatic cells. J Andrology 13:457–464. 1992.

    Google Scholar 

  164. Montpetit ML, Lawless KR, Tenniswood M: Androgen repressed messages in the rat ventral prostate. Prostate 8:25–36, 1986.

    Article  PubMed  CAS  Google Scholar 

  165. Buttyan R, Zaker Z, Lochshin R, et al: Cascade induction of c-fos, c-myc, and heat shock 70K transcripts during regression of the rat ventral prostate gland. Mol Endocrinol 2:650–657, 1988.

    PubMed  CAS  Google Scholar 

  166. Kyprianou N, Issacs J: Expression of transforming growth factor-b in the rat ventral prostate during castration-induced programmed cell death. Mol Endocrinol 3:1515–1522. 1989.

    PubMed  CAS  Google Scholar 

  167. Saltzman AG, Hüpakka RA, Chang C.et al: Androgen repression of the production of 29 kilodalton protein and its mRNA in the rat ventral prostate. J Biol Chem 262:432–437. 1987.

    PubMed  CAS  Google Scholar 

  168. Kyprianou N, English SH, Issacs JT: Activation of a Ca2+-Mg2+-dependent endonuclease as an early event in castration-induced prostatic cell death. Prostate 13:103–118, 1988.

    Article  PubMed  CAS  Google Scholar 

  169. English HF, Kyprianou N, Issacs JT: Relationship between DNA fragmentation and apoptosis in the programmed cell death in the rat prostate following eastration. Prostate 15:233–251, 1989.

    Article  PubMed  CAS  Google Scholar 

  170. Martikainen P, Issacs JT: Role of calcium in the programmed cell death of rat prostate glandular cells. Prostate 17:175–188, 1990.

    Article  PubMed  CAS  Google Scholar 

  171. Kyprianou N, Issacs JT: Thymineless death in androgen-independent prostatic cancer cells. Biochem Biophys Res Coomun 165:73–81, 1989.

    Article  CAS  Google Scholar 

  172. Martikainen P, Kyprianou N. Tucker RW, et al: Programmed death of nonproliferating and androgen-independent prostatic cancer cells. Cancer Res 51:4693–4701, 1991.

    PubMed  CAS  Google Scholar 

  173. Wheeler TM, Rogers E, Aihara M, et al: Apoptotic index as a biomarker in prostatic intraepithelial neoplasia (PIN) and prostate cancer. J Cellular Biochem 19:202–207, 1994.

    CAS  Google Scholar 

  174. Stiens R. Helpap B, Weissbach L: Quantitative investigation of cell loss in prostate carcinomas: clinical-morphological aspects. Verb Ges Urol 32:73–74. 1981.

    Google Scholar 

  175. Van Werden WM.van Kreuninggen A, Elissen NMJ, et al: Catration-induced changes in morphology, androgen levels, and proliferative activity of human prostate cancer tissue grown in athymic nude mice. Prostate 23:149–164, 1993.

    Article  Google Scholar 

  176. Westin P, Stattin P, Damber J-E, et al: Castration therapy rapidly induces apoptosis in a minority and decreases cell proliferation in a majority of human prostatic tumors. Am J Pathol 146:1368–1375, 1995.

    PubMed  CAS  Google Scholar 

  177. Berges RR, Furuya Y, Remington F, et al: Cell proliferation. DNA repair, and p53 function are not required for programmed cell death of prostatic glandular cells induced by androgen ablation. Proc Natl Acad Sci USA 90:910–914, 1993.

    Article  Google Scholar 

  178. Mattieu C. Jozan S, Mazars P, et al: Density-dependent induction of apoptosis by transforming growth factor-b1 in a human ovarian carcinoma cell line. Exp Cell Res 216:13–20, 1995.

    Article  Google Scholar 

  179. Wang CY, Eshleman JR, Willson JKV, et al: Both transforming growth factor-b and substrate release are inducers of apoptosis in a human colon adenoma cell line. Cancer Res 55:5101–5105, 1995.

    PubMed  CAS  Google Scholar 

  180. Martikainen P, Kyprianou N, Issacs JT: Effect of transforming growth factor-b1 on proliferation and death of rat prostatic cells. Endocrinology 127:2963–2968, 1990.

    PubMed  CAS  Google Scholar 

  181. Kim IY, Ahn H-J, Zelner DJ, et al: Genetic change in transforming growth factor b (TGE-b) recetpor type 1 gene correlates with insensitivity to TGF-b1 in human prostate cancer cells. Cancer Res 56:44–48, 1996.

    PubMed  CAS  Google Scholar 

  182. Landstrom M, Bergh A, Tomic R, et al: Estrogen treatment combined with castration inhibits tumor growth more effectively than castration alone in the Dunning R-3327 rat prostatic adenocarcinoma. Prostate 17:57–68, 1990.

    Article  PubMed  CAS  Google Scholar 

  183. Ho S-M, Leav I, Merk FB, et al: Induction of atypical hyperplasia, apoptosis. and type II estrogen-binding sites in the ventral prostates of Noble rats treated with testosterone and pharmacologic doses of estradiol-17b. Lab Invest 73:356–365. 1995.

    PubMed  CAS  Google Scholar 

  184. Raghavan D: Non-hormone chemotherapy for prostate cancer: principles of treatment and application to the testing of new drugs. Semin Oncol 15:371–389. 1988.

    PubMed  CAS  Google Scholar 

  185. Borner MM, Myers CF, Sartor O, et al: Drug-induced apoptosis is not necessarily dependent on macromolecular synthesis or proliferation in the p53-ncgative human prostate cancer cell line PC-3. Cancer Res 55:2122–2128. 1995.

    PubMed  CAS  Google Scholar 

  186. Kyprianou N.Balns A, Jacobs S: Induction of apoptosis in androgen-independent human prostate cancer cells undergoing thymineless death. Prostate 25:66–75. 1994.

    Article  PubMed  CAS  Google Scholar 

  187. Berges RR, Vukanovie J, Epstein JI, et al: Implication of the cell kinetic changes during the progression of human prostatic cancer. Clin Cancer Res 1:473–480. 1995.

    PubMed  CAS  Google Scholar 

  188. Vulkanovie J. Isaacs JT: Human prostatic cancer cells are sensitive to programmed (apoptotic) death induced by the antiangiogenic agent Linomide. Cancer Res 55:3517–3520. 1995.

    Google Scholar 

  189. Li CJ, Wang C. Pardee AB: Induction of apoptosis by b-lapachone in human prostate cancer cells. Cancer Res 55:3712–3715, 1995.

    PubMed  CAS  Google Scholar 

  190. Planchon SM, Wuerzberger S, Frydnum B, et al: b-Lapachone-mediated apoptosis in human promyocytic leukemia (HL-60) and human prostate cancer cells: A independent response. Cancer Res 55:3706–3711, 1995.

    PubMed  CAS  Google Scholar 

  191. Fritz, IB, Murphy B: Cluterin: insights into a multifunctional protein. Trends Metab Sci 4:41–45. 1993.

    Article  CAS  Google Scholar 

  192. Buttuzzi S, Hüpakka RA, Gilna P, et al: Identification of an androgen-repressed mRNA in rat ventural prostate as coding for sulfated glycoprotein 2 by cDNA cloning and sequence analysis. Biochem J 257:293–296, 1989.

    Google Scholar 

  193. Wright PS, Cross-Doersen D, Th’ng JPH, et al: A ribonueotide reductase inhibitor, MDL 101,731, induces apoptosis and elevates TRPM-2 mRNA levels in human prostate tumor xenografts. Exp Cell Res 222:54–60, 1996.

    Article  PubMed  CAS  Google Scholar 

  194. Buttyan R, Olsson CA, Pintar J, et al: Induction of the TRPM-2 gene in cells undergoing programmed cell death. Mol Cell Biol 9:3471–3481, 1989.

    Google Scholar 

  195. Sensibar JA, Sutkowski DM, Raffo A, et al: Prevention of cell death induced by tumor necrosis factor-a in LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res 55:2431–2437. 1995.

    PubMed  CAS  Google Scholar 

  196. Liu AY, Corey E, Bladou F, et al: Prostatic cell lineage markers: Emergence of Bcl2+ cells of human prostate cancer xenograft LuCaP 23 following castration. Int J Cancer 65:85–89, 1996.

    Article  PubMed  CAS  Google Scholar 

  197. Berchem GJ, Bosseler M, Sugars LY, et al: Androgens induce resistance to bcl-2-mediated apoptosis in LNCaP prostate cancer cells. Cancer Res 55:735–738, 1995.

    PubMed  CAS  Google Scholar 

  198. Raffo AJ, Perlman H, Chen M-W, et al: Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55:4438–4445. 1995.

    PubMed  CAS  Google Scholar 

  199. Reed JC, Stein Subasinghe C, et al: Antisense-mediated inhibition of BCL-2 protooncogene expression and leukemic cell growth and survival: comparison of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 50:6565–6570, 1990.

    PubMed  CAS  Google Scholar 

  200. Dawson NA, Wilding G, Weiss RB, et al: A pilot study of chemohormonal therapy for metastatic prostate cancer. Cancer 69:213–218, 1992.

    Article  PubMed  CAS  Google Scholar 

  201. Mukamel E, Nussbaum B: Fifteen years experience of combined hormone/chemotherapy in metastatic prostate cancer. Urology 39:274–276, 1992.

    Article  PubMed  Google Scholar 

  202. Visakorpi T, Kallioniemi OP, Heikkinen A, et al: Small subgroup of aggressive, highly proliferative prostatic carcinoma defined by p53 accumulation. J Natl Cancer Inst 84:883–887, 1992.

    Article  PubMed  CAS  Google Scholar 

  203. Effert PJ, McCoy RH, Walther PJ: p53 gene alterations in human prostate carcinoma. J Urol 150:257–261. 1993.

    PubMed  CAS  Google Scholar 

  204. Bookstein R, MacGrogan D, Hilsenbeek SG: p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 53:3369–3373. 1993.

    PubMed  CAS  Google Scholar 

  205. Miyashita T.Krajewski S, Krajewski M, et al: Tumor suppressor p53 is a regulator of Bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805, 1993.

    Google Scholar 

  206. Girinsky T, Koumenis C, Graeber TG, et al: Attenuated response of p53 and p21 in primary cultures of human prostatic epithelial cells exposed to DNA-damaging agents. Cancer Res 55:3726–3731. 1995.

    Google Scholar 

  207. Yang C. Cirielli C, Capogrossi MC, et al: Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigensis of prostatic tumor cells. Cancer Res 55:4210–4213, 1995.

    PubMed  CAS  Google Scholar 

  208. Sinha BK, Yamazaki H, Eliot HM, et al: Relationships between proto-oncogene expression and apoptosis induced by anticaneer drugs in human prostate tumor cells. Biochim Biophys Acta 1270:12–18. 1995.

    PubMed  Google Scholar 

  209. Voeller HJ, Wilding G. Gelmann EP: v-ras-H expression confers hormone-independent in vitro growth to LNCap prostate carcinoma cells. Mol Endocrinol 5:209–216, 1991.

    Article  PubMed  CAS  Google Scholar 

  210. Furuya Y, Lundmo P, Short AD, et al: The role of calcium. pH. and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res 54:6167–6175. 1994.

    PubMed  CAS  Google Scholar 

  211. Day ML, Zhao X, Wu S, et al: Phorbol ester-induced apoptosis is accompanied by NGFI-A and c-fos activation in androgen-sensitive prostate cancer cells. Cell Growth Differ 5:735–741, 1994.

    PubMed  CAS  Google Scholar 

  212. Young CYF, Murtha PE, Zhang J: Tumor-promoting phorbol ester-induced cell death and gene expression in a human prostate adenocarcinoma cell line. Oncol Res 6:203–210, 1994.

    PubMed  CAS  Google Scholar 

  213. Honn KV, Tang DG: Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Metastasis Rev 11:353–375, 1992.

    Article  PubMed  CAS  Google Scholar 

  214. Honn KV, Tang DG, Chen YQ: Platelets and cancer metastasis: More than an epiphenomenon. Seminar Thromb Hemost 18:392–415, 1992.

    CAS  Google Scholar 

  215. Fidler IJ, Hart IR: Biological diversity in metastatic neoplasms: Origins and implication. Science 217:998–1003, 1982.

    Article  PubMed  CAS  Google Scholar 

  216. Liotta LA, Steeg PS, Stetler-Stevenson WG: Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 64:327–336, 1991.

    Article  PubMed  CAS  Google Scholar 

  217. Folkman J, Shing Y: Angiogenesis. J Biol Chem 267:10931–10934, 1992.

    PubMed  CAS  Google Scholar 

  218. Bostwick DG, Qian J: Current and proposed biologic markers in prostate cancer: 1994. J Cell Biochem 19:197–201. 1994.

    CAS  Google Scholar 

  219. Grizzle WE, Myers RB, Arnold MM, et al: Evaluation of biomarkers in breast and prostate cancer. J Cell Biochem 19:259–266, 1994.

    CAS  Google Scholar 

  220. Zhau HE, Pisters LL, Hall MC, et al: Biomarkers associated with prostate cancer progression. J Cell Biochem 19:208–216, 1994.

    CAS  Google Scholar 

  221. Zutter MM, Mazoujian G, Santoro SA: Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast. Am J Pathol 137:863–870, 1990.

    PubMed  CAS  Google Scholar 

  222. Gehlsen KR, Davis GE, Sriramarao P: Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis 10:111–120, 1992.

    Article  PubMed  CAS  Google Scholar 

  223. Perrotti D, Cimino L, Falcioni R, et al: Metastatic phenotype: Growth factor dependence and integrili expression. Anticancer Res 10:587–598, 1990.

    Google Scholar 

  224. Feldman LE, Shin KC, KNatale RB, et al: F. bl integrin expression on human small cell king cancers. Cancer Res 51:1065–1070, 1991.

    PubMed  CAS  Google Scholar 

  225. Chan BMC, Matsuura N, Takada Y, et al: In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science 251:1600–1602, 1991.

    Article  PubMed  CAS  Google Scholar 

  226. Schipper JH, Frixen UH, Behrens J, et al: E-cadherin expression in squamous cell carcinoma of head and neck: Inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res 51:6328–6337, 1991.

    PubMed  CAS  Google Scholar 

  227. Sommers CL, Thompson EW, Torri JA, et al: Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: Relationship to morphology and invasive capacities. Cell Growth Differ 2:365–372, 1991.

    PubMed  CAS  Google Scholar 

  228. Frixen UH, Behrens J, Sachs M, et al: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113:173–185. 1991.

    Article  PubMed  CAS  Google Scholar 

  229. Vlenunckx K, Vakaek L, Mareel M, et al: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66:107–119. 1991.

    Article  Google Scholar 

  230. Johnson JP: Cell adhesion molecules of the immunoglobulin supergene family and their role in malignant transformation and progression to metastatic disease. Cancer Metastasis Rev 10:11–22, 1991.

    Article  PubMed  CAS  Google Scholar 

  231. Nagle RB, Knox JD, Wolf C, et al: Adhesion molecules, extracellular matrix, and proteases in prostate carcinoma. J Cell Biochem 19:232–237, 1994.

    CAS  Google Scholar 

  232. Ewing CM, Ru N, Morton RA, et al: Chromosome 5 suppresses tumorigenecity of PC3 prostate cancer cells: Correlation with re-expression of a-catenin and restoration of E-cadherin function. Cancer Res 55:4813–4817, 1995.

    PubMed  CAS  Google Scholar 

  233. Graff JR, Herman JG, Lapidus RG, et al: E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5196–5199, 1995.

    Google Scholar 

  234. Kleinerman DJ, Troncoso P, Lin S-H, et al: Consistent expression of an epithelial cell adhesion molecule (C-CAM) during human prostate development and loss of expression in prostate cancer: Implication as a tumor suppressor. Cancer Res 55:1215–1220, 1995.

    PubMed  CAS  Google Scholar 

  235. Jorgensen T, Berner A, Kaalhus O, et al: Up-regulation of the oligosaccharide sialyl Lewisx: A new prognostic parameter in metastatic prostate cancer. Cancer Res 55:1817–1819, 1995.

    PubMed  CAS  Google Scholar 

  236. Pienta KJ, Naik H, Akhtar A, et al: Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J Natl Cancer Inst 87:348–353, 1995.

    Article  PubMed  CAS  Google Scholar 

  237. Lokeshwar VB, Lokeshwar BL, Pham HT, et al: Association of elevated levels of hyaluronidase. a matrix-degrading enzyme, with prostate cancer progression. Cancer Res 56:651–657, 1996.

    PubMed  CAS  Google Scholar 

  238. Webber MM, Waghray A, Bello D: Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clinical Cancer Res 1:1089–1094, 1995.

    CAS  Google Scholar 

  239. Rabbani SA, Harakidas P, Davidson DJ, et al: Prevention of prostate-cancer metastasis in vivo by a novel synthetic inhibitor of urokinase-type plasminogen activator. Int J Cancer 63:840–845, 1995.

    Article  PubMed  CAS  Google Scholar 

  240. Yoshida E, Verrsio EN, Mihara H, et al: Enhancement of the expression of urokinase-type plasminogen activator from PC-3 human prostate cancer cells by thrombin. Cancer Res 54:3300–3304, 1994.

    PubMed  CAS  Google Scholar 

  241. Monne M, Croce CM, Yu H, et al: Molecular characterization of prostate-specific antigen messenger RNA expressed in breast tumors. Cancer Res 54:6344–6347, 1994.

    PubMed  CAS  Google Scholar 

  242. Yu H, Diammandis EP, Levesque M. et al: Expression of the prostate-specific antigen gene by a primary ovarian carcinoma. Cancer Res 55:1603–1606, 1995.

    PubMed  CAS  Google Scholar 

  243. Smith MR, Biggar S, Hussain M: Prostate-specific antigen messenger RNA is expressed in non-prostate cells: Implications for detection of micrometastases. Cancer Res 55:2640–2644, 1995.

    PubMed  CAS  Google Scholar 

  244. Vukanovic J, Issacs JT: Linomide inhibits angiogensis. growth, metastasis, and macrophage infiltration within rat prostatic cancers. Cancer Res 55:1499–1504, 1995.

    PubMed  CAS  Google Scholar 

  245. Vukanovic J, Isaacs JT: Human prostatic cancer cells are sensitive to programmed (apoptotic) death induced by the antiangiogenic agent Linomide. Cancer Res 55:3517–3520. 1995.

    PubMed  CAS  Google Scholar 

  246. Tang DG, Honn KV: Adhesion molecules and tumor metastasis: An update. Invasion Metastasis 14:109–122. 1995.

    CAS  Google Scholar 

  247. Tang DG, Honn KV: Adhesion molecules and tumor cell-vasculature interactions: Modulation by bioactive lipid molecules. In: Current Topics in Microbiology and Immunology. Springer-Verlag, pp69–88, 1996.

  248. Tang DG, Honn KV: 12-Lipoxygenase, 12(S)-HETE, and cancer metastasis. Annals NY Acad Sci 722:199–215, 1994.

    Article  Google Scholar 

  249. Honn KV, Tang DG, Gao X, et al: 12-Lipoxygenase and 12(S)-HETE: Role in cancer metastasis. Cancer Metastasis Rev 13:365–396, 1994.

    Article  PubMed  CAS  Google Scholar 

  250. Liu Howlett J, Diglio CA, et al: Lipoxygenase metabolites of arachidonic and linoleic acids modulate the adhesion of tumor cells to the endothelium via regulation of protein kinase C. Cell Regul 2:1045–1055. 1991.

    PubMed  CAS  Google Scholar 

  251. Tang DG, Tarrien M, Dobrzynski P, et al: Melanoma cell spreading in fibronectin induced by 12(S)-HETE involves both protein kinase and protein tyrosine kinase-dependent focal adhesion formation and tyrosine phosphorylation of focal adhesion kinase (ppl25FAK). J Cell Physiol 165:291–306, 1995.

    Article  PubMed  CAS  Google Scholar 

  252. Tang DG, Renaud C. Stojakovic S, et al: 12(S)-HETE is a mitogenic factor for microvascular endothelial cells: Its potential role in angiogenesis. Biochem Biophys Res Commun 211:462–468, 1995.

    Article  PubMed  CAS  Google Scholar 

  253. Gao X, Grignon DJ, Chbihi T, et al: Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology 46:227–237, 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part I. of this review has been published in the previons issue, and Part HI. will be in the next issue of POR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honn, K.V., Aref, A., Chen, Y.Q. et al. Prostate Cancer Old Problems and New Approaches. Pathol. Oncol. Res. 2, 191–211 (1996). https://doi.org/10.1007/BF02903527

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02903527

Key words

Navigation