Skip to main content
Log in

Multi-scaling hierarchical structure analysis on the sequence ofE. coli complete genome

  • Note
  • Published:
Chinese Science Bulletin

Abstract

We have applied the newly developed hierarchical structure theory for complex systems to analyze the multi-scaling structures of the nucleotide density distribution along a linear DNA sequence from the completeEscherichia coli genome. The hierarchical symmetry in the nucleotide density distribution was demonstrated. In particular, we have shown that the G, C density distribution that represents a strong H-bonding between the two DNA chains is more coherent with smaller similarity parameter compared to that of A, T density distribution, indicating a better organized multi-scaling fluctuation field for G, C density distribution along the genome sequence. The biological significance of these findings is under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunham, L., Shimizu, N., Roe, B. A. et al., The DNA sequence of human chromosome 22, Nature, 1999, 402: 489.

    Article  Google Scholar 

  2. Gerald, M. R., Mark, D. Y., Jennifer, R. W. et al., Comparative genomics of the eukaryotes, Science, 2000, 287: 2204.

    Article  Google Scholar 

  3. Reddy, B. V., Pandit, M. W., A statistical analytical approach to decipher information from biological sequences: application to murine splice-site analysis and prediction, J. Biomol. Struct. Dyn., 1995, 12(4): 785.

    Google Scholar 

  4. Wang, N., Chen, R. S., Comparison between phylogeny of introns and exons in primates, Chinese Science Bulletin, 1999, 44(21): 1940.

    Article  Google Scholar 

  5. Gtaziano, P., Marcella, A., Cecilia, S., Linguistic analysis of nucleotide sequences: Algorithms for pattern recognition and analysis of codon strategy, Method in Enzymology, 1996, 266: 281.

    Article  Google Scholar 

  6. Flam, F., Hints of a language in Junk DNA, Science, 1994, 266: 1320.

    Article  Google Scholar 

  7. Peng, C. K., Buldyrev, S. V., Goldberger, A. L. et al., Long-range correlations in nucleotide sequences, Nature, 1992, 356: 168.

    Article  Google Scholar 

  8. Lu, X., Sun, Z., Chen, H. et al., Characterizing self-similarity in bacteria DNA sequences, Phys. Rev. Series E, 1998, 58: 3578.

    Article  Google Scholar 

  9. Voss, R. F., Evolution of long-range fractal correlation and 1/f noise in DNA base sequences, Phys. Rev. Lett., 1992, 68: 3805.

    Article  Google Scholar 

  10. Buldyrev, S. V., Goldberger, A. L., Havlin, S. et al., Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis, Phys. Rev. Series E, 1995, 51: 5084.

    Article  Google Scholar 

  11. Li, W., Marr, T., Kaneko, K., Understanding long-range correlations in DNA sequences, Physica Series D, 1994, 75: 392.

    Article  Google Scholar 

  12. Arneodo, A., Bacry, C., Graves, V. et al., Characterizing long-range correlation in DNA sequences from wavelet analysis, Phys. Rev. Lett., 1995, 74: 3293.

    Article  Google Scholar 

  13. Arneodo, A., D’Aubenton-Carafa, Y., Audit, B. et al., What can we learn with wavelets about DNA sequences, Physica Series A, 1998, 249: 439.

    Article  Google Scholar 

  14. Li, W., The study of correlation structures of DNA sequences: a critical review, Computers Chem., 1997, 21(4): 257.

    Article  Google Scholar 

  15. Maddox, J., Long-range correlations within DNA, Nature, 1992, 358: 103.

    Article  Google Scholar 

  16. Grassberger, P., Toward a quantitative theory of self-generated complexity, Inter. J. Theor. Phys., 1986, 25(9): 907.

    Article  Google Scholar 

  17. Blattner, F. R., Plunkett, III, G., Bloch, A. C. et al., The complete genome sequence ofEscherichia coli K-12, Science, 1997, 277: 1453.

    Article  Google Scholar 

  18. She, Z. S., Leveque, E., Universal scaling laws in fully developed turbulence, Phys. Rev. Lett., 1994, 72: 336.

    Article  Google Scholar 

  19. She, Z. S., Waymire, E., Quantized energy cascade and Log-Poisson statistics in fully developed turbulence, Phys. Rev. Lett., 1995, 74: 262.

    Article  Google Scholar 

  20. She, Z. S., Hierarchical structures and scaling in turbulence, Lecture Notes in Physics, 1997, 491: 28.

    Article  Google Scholar 

  21. She, Z. S., Ren, K., Lewis, G. S. et al., Scaling and structures in turbulent Couette-Taylor flow, Phys. Rev. Series E, 2001, 640(1): 6308.

    Google Scholar 

  22. Bershadskii, A., Generalized scaling in nonscaling diffusion, Physica Series A, 2000, 278: 497.

    Article  Google Scholar 

  23. Bernaola-Galvan, P., Oliver, J. L., Roman-Roldan, R., Decomposition of DNA sequence complexity, Phys. Rev. Lett., 1999, 83: 3336.

    Article  Google Scholar 

  24. Gautier, C., Compositional bias in DNA, Curr. Opin. Genet. Dev., 2000, 10: 656.

    Article  Google Scholar 

  25. Roman-Roldan, R., Bernaola-Galvan, P., Oliver, J. L., Sequence compositional complexity of DNA through entropie segmentation method, Phys. Rev. Lett., 1998, 80: 1344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

About this article

Cite this article

Wang, J., Zhang, Q., Ren, K. et al. Multi-scaling hierarchical structure analysis on the sequence ofE. coli complete genome. Chin.Sci.Bull. 46, 1988–1991 (2001). https://doi.org/10.1007/BF02901913

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02901913

Keywords

Navigation