Skip to main content
Log in

Molecular phylogeny of the specialized schizothoracine fishes (Teleostei: Cyprinidae), with their implications for the uplift of the Qinghai-Tibetan Plateau

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Molecular phylogeny of three genera containing nine species and subspecies of the specialized schizothoracine fishes are investigated based on the complete nucleotide sequence of mitochondrial cytochromeb gene. Meantime relationships between the main cladogenetic events of the specialized schizothoracine fishes and the stepwise uplift of the Qinghai-Tibetan Plateau are also conducted using the molecular clock, which is calibrated by geological isolated events between the upper reaches of the Yellow River and the Qinghai Lake. Results indicated that the specialized schizothoracine fishes are not a monophyly. Five species and subspecies ofPtychobarbus form a monophyly. But three species ofGymnodiptychus do not form a monophyly.Gd. integrigymnatus is a sister taxon of the highly specialized schizothoracine fishes whileGd. pachycheilus has a close relation withGd. dybowskii, and both of them are as a sister group ofDiptychus maculatus. The specialized schizothoracines fishes might have originated during the Miocene (about 10 MaBP), and then the divergence of three genera happened during late Miocene (about 8 MaBP). Their main specialization occurred during the late Pliocene and Pleistocene (3.54-0.42 MaBP). The main cladogenetic events of the specialized schizothoracine fishes are mostly correlated with the geological tectonic events and intensive climate shift happened at 8, 3.6, 2.5 and 1.7 MaBP of the late Cenozoic. Molecular clock data do not support the hypothesis that the Qinghai-Tibetan Plateau uplifted to near present or even higher elevations during the Oligocene or Miocene, and neither in agreement with the view that the plateau uplifting reached only to an altitude of 2000 m during the late Pliocene (about 2.6 MaBP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paul, T., Xu, Z., Francoise, R. et al., Oblique stepwise rise and growth of the Tibet Plateau, Science, 2001, 294(23): 1671–1677.

    Google Scholar 

  2. Harrison, T. M., Copeland, P., Kidd, W. S. F. et al., Raising Tibet, Science, 1992, 255: 1663–1670.

    Article  Google Scholar 

  3. Fielding, E., Tibet uplift and erosion, Tectonophysics, 1996, 260: 55–84.

    Article  Google Scholar 

  4. Zhong, D. L., Ding, L., Rising process of the Qinghai-Xizang (Tibet) Plateau and its mechanism, Science in China, Ser. D, 1996, 39(4): 369–379.

    Google Scholar 

  5. Li, J. J., Fang, X. M., Uplift of the Tibetan Plateau and environmental changes, Chinese Science Bulletin, 1998, 44(23): 2117–2125.

    Article  Google Scholar 

  6. Cao, W. X., Chen, Y. Y., Wu, Y. F. et al., Origin and evolution of schizothoracine fishes in relation to the upheaval of the Xizang Plateau, in Collection in Studies on the Period, Amplitude and Type of the Uplift of the Qinghai-Xizang Plateau (in Chinese) (ed. The Team of the Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences), Beijing: Science Press, 1981, 118–130.

    Google Scholar 

  7. Wu, Y. F., Studies on phylogeny of subfamily Schizothoracinae (Pisces, Cypriniformes, Cyprinidae) in China, Acta Biologica Plateau Sinica (in Chinese), 1984, 3: 119–140.

    Google Scholar 

  8. Wu, Y. F., Tan, Q. J., Characteristics of the fish-fauna of the characteristics of Qinghai-Xizang Plateau and its geological distribution and formation, Acta Zootaxonomic Sinica (in Chinese), 1991, 37(2): 135–151.

    Google Scholar 

  9. Chen, Y. F., Phylogeny and distributional patterns of subfamily Schizothoracinae (Pisces, Cypriniformes, Cyprinidae): I. Phylogenetic Relationships, Acta Zootaxon Sinica (in Chinese), 1998, 23(Special J Zoogeography): 17–25.

    Google Scholar 

  10. Chen, Y. F., Chen, Y. Y., Phylogeny and distributional patterns of subfamily Schizothoracinae (Pisces, Cypriniformes, Cyprinidae): II. Distributional patterns and eroding headward of Yellow River, Acta. Zootaxon Sinica (in Chinese), 1998, 23(Special J Zoogeography): 26–34.

    Google Scholar 

  11. Chen, Z. M., Chen, Y. F., Phylogeny of the specialized schizothoracine fishes (Teleostei: Cypriniformes: Cyprinidae), Zoological Studies, 2001, 40(2): 147–157.

    Google Scholar 

  12. Chen, Z. M., Chen, Y. F., Genetic relationships of the specialized schizothoracine fishes inferred from random amplified polymorphic DNA analysis, Zoological Research (in Chinese), 2000, 21(4): 262–268.

    Google Scholar 

  13. Tsigenopoulos, C. S., Berrebi, P., Molecular phylogeny of North Mediterranean freshwater barbs (GenusBarbus: Cyprinidae) inferred from cytochromeb sequences: Biogeographic and systematic implications, Mol. Phylogenet. Evol., 2000, 14(2): 165–179.

    Article  Google Scholar 

  14. Kotlik, P., Berrebi, P., Genetic subdivision and biogeography of the Danubian phylogenetic analysis of mitochondrial DNA variation. Mol. Phylogenet Evol., 2002, 24: 10–18.

    Article  Google Scholar 

  15. Sambrook, J., Russell, D. W. et al., Molecular Cloning: A Laboratory Manual, 3rd ed. (in Chinese, Translated by Huang, P. T. et al.), Beijing: Science Press, 2002, 463–618.

    Google Scholar 

  16. Thompson, J. D., Higgins, D. G., Gibson, T. J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Research, 1994, 22: 4673–4680.

    Article  Google Scholar 

  17. Kumar, S., Tamura, K., Nei, M., MEGA: Molecular evolutionary genetics analysis, University Park, PA: Pennsylvania State University, 1993.

    Google Scholar 

  18. Wu, Y. F., Chen, Y. Y., Fossil cyprinid fishes from the late Tertiary of north Xizang, China Verteb. Palasiatica (in Chinese), 1980, 13: 15–20.

    Google Scholar 

  19. Swofford, D. L., PAUP* Phylogenetic analysis using parsimony (*and other methods), Version 4, Sunderland, Massachusetts: Sinauer Associates, 1998–2002.

  20. Posada, D., Crandall, K. A., Modeltest: testing the model of DNA substitution, Bioinformatics, 1998, 14: 817–818.

    Article  Google Scholar 

  21. Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 1993, 10(3): 512–526.

    Google Scholar 

  22. Felsenstein, J., Confidence limits on phylogenies: An approach using the bootstrap, Evolution, 1985, 39: 783–791.

    Article  Google Scholar 

  23. Muse, S. V., Weir, B. S., Testing for equality of evolutionary rates, Genetics, 1992, 132: 269–276.

    Google Scholar 

  24. Takezaki, N., Rzhetsky, A., Nei, M., Phylogenetic tests of the molecular clock and linearized trees, Mol. Biol. Evol., 1995, 12: 823–833.

    Google Scholar 

  25. Strimmer, K., Haeseler, A.von, Quartet puzzling: A quartet maximum likelihood method for reconstructing tree topologies, Mol. Biol. Evol., 1996, 13: 964–969.

    Google Scholar 

  26. Li, J. J., Fang, X. M., Ma, H. Z. et al., Geomorphologic and environmental evolution in upper reaches of Yellow River during the late Cenozoic, Science in China, Ser. D, 1996, 39(4): 380–390.

    Google Scholar 

  27. Li, J. J., Fang, X. M., Pan, B. T., Late Cenozoic intensive uplift of Qinghai-Xijiang Plateau and its impacts on environments in surrounding area, Quaternary Sciences, 2001(5): 381–391.

  28. Nei, M., Molecular Evolutionary Genetics, New York: Columbia University Press, 1987.

    Google Scholar 

  29. Huang, S. Y., Chen, Y. Y., Phylogenetic relationships ofDiptychus chungtienensis andD. kaznakovi with special reference to the zoogeographical analysis, Acta. Zootaxonomic Sinica (in Chinese), 1986, 11(1): 100–107.

    Google Scholar 

  30. Martin, A. P., Palumbi, S. R., Body size, metabolic rate, generation time and the molecular clock, Proc. Natl. Acad. Sci. USA, 1993, 90: 4087–4091.

    Article  Google Scholar 

  31. Perdices, A., Doadrio, I., The molecular systematics and biogeography of the European cobitids based on mitochondrial DNA sequences, Mol. Phylogenet. Evol., 2001, 19: 468–478.

    Article  Google Scholar 

  32. Zardoya, R., Doadrio, I., Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids, J. Mol. Evol., 1999, 49: 227–237.

    Article  Google Scholar 

  33. Machordom, A., Doadrio, I., Evidence of a Cenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae), Mol. Phylogenet. Evol., 2001, 18: 252–263.

    Article  Google Scholar 

  34. Durand, J., Tsigenopoulos, C., Ünlü, E. et al., Phylogeny and biogeography of the family Cyprinidae in the Middle East inferred from cytochromeb DNA-evolutionary significance of this region, Mol. Phylogenet. Evol., 2002, 22(1): 91–100.

    Article  Google Scholar 

  35. Kroon, D., Steens, T., Troelstra, S. R., Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers, Proc. ODP Sci. Res., 1991, 116: 257–263.

    Google Scholar 

  36. Harrison, T. M., Copeland, P., Kidd, W. S. F. et al., Activation of the Nyainqentanghla shear zone: implications for uplift of the southern Tibetan Plateau, Tectonics, 1995, 14: 658–676.

    Article  Google Scholar 

  37. Fang, X. M., Li, J. J., Zhu, J. J. et al., The absolute age and division of Cenozoic stratum from the Linxia Basin in Gansu Province, Chinese Science Bulletin (in Chinese), 1997, 42(14): 1458–1471.

    Google Scholar 

  38. An, Z., Kutzbach, J. E., Prell, W. L. et al., Evolution of Asian monsoons and phased uplift of the Himalayan-Tibetan Plateau since late Miocene times, Nature, 2001, 411: 62–66.

    Article  Google Scholar 

  39. Liu, J. Q., Gao, T. G., Chen, Z. D. et al., Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemicNannoglottis (Asteraceae), Mol. Phylogenet. Evol., 2002, 23: 307–325.

    Article  Google Scholar 

  40. Zheng, H., Powell, C. M., An, Z. et al., Pliocene uplift of the northern Tibet Plateau, Geology, 2000, 28(8): 715–718.

    Article  Google Scholar 

  41. Copeland, P., Harrison, T. M., Kidd, W. S. F. et al., Rapid early Miocene acceleration of uplift in the Gangdese belt, Xizangsouthern Tibet, and its bearing on accommodation mechanisms of the India-Asia collision, Earth and Planetary Science Letters, 1987, 86: 240–252.

    Article  Google Scholar 

  42. Molnar, P., England, P., Martinod, J., Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon, Reviews of Geophysics, 1993, 31: 357–396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Chen.

About this article

Cite this article

He, D., Chen, Y., Chen, Y. et al. Molecular phylogeny of the specialized schizothoracine fishes (Teleostei: Cyprinidae), with their implications for the uplift of the Qinghai-Tibetan Plateau. Chin. Sci. Bull. 49, 39–48 (2004). https://doi.org/10.1007/BF02901741

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02901741

Keywords

Navigation