Skip to main content
Log in

Auroral substorm response to solar wind pressure shock

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

Two cases of auroral substorms have been studied with the Polar UVI data, which were associated with solar wind pressure shock arriving at the Earth. The global aurora activities started about 1–2 min after pressure shocks arrived at dayside magnetopause, then nightside auroras intensified rapidly 3–4 min later, with auroral substorm onset. The observations in synchronous orbit indicated that the compressing effects on magnetosphere were observed in their corresponding sites about 2 min after the pressure shocks impulse magnetopause. We propose that the auroral intensification and substorm onset possibly result from hydromagnetic wave produced by the pressure shock. The fast-mode wave propagates across the magnetotail lobes with higher local Alfven velocity, magnetotail was compressed rapidly and strong lobe field and cross-tail current were built in about 1–2 min, and furthermore the substorm was triggered due to an instability in current sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dungey, J. W., Interplanetary magnetic field and auroral zones, Geophys. Res. Lett., 1961, 6: 47.

    Article  Google Scholar 

  2. Axford, W. I., Hines, C. O., A unifying theory of high-latitude geophysical phenomena and geomagnetic storm., Can J. Phys, 1961, 39: 1433.

    Google Scholar 

  3. Baker, D. N., Pulkkinen, T. I., Angelopoulos, V. et al., Neutral line model of substorms: Past results and present view, J. Geophys Res., 1996, 101(A6): 12975.

    Article  Google Scholar 

  4. Lui, A. T. Y., Current disruption in Earth’s magnetosphere: Observations and models, J. Geophys. Res., 1996, 101(A6): 13067.

    Article  Google Scholar 

  5. Lyons, L. R., Substorms: Fundamental observational features: distinction from other disturbances, and external triggering, J. Geophys. Res., 1996, 101(A6): 13089.

    Article  Google Scholar 

  6. Pu, Z. Y., Korth, A., Chen, Z. X. et al., MHD drift ballooning instability near the inner edge of the near-Earth plasma sheet and its application to substorm onset, J. Geophys. Res., 1997, 102(A7): 14397.

    Article  Google Scholar 

  7. Shen Chao, Liu Zhenxing. Substorm onset caused by IMF northward turning, Science in China, Series A, 2000, 30(Suppl.): 69.

    Google Scholar 

  8. Russell, C. T., Zhou, X. W., Chi, P. J. et al., Sudden compression of the outer magnetosphere associated with an ionospheric mass ejection, Geophys. Res. Lett., 1999, 26: 2343.

    Article  Google Scholar 

  9. Sibeck, D. G., Baumjohann, W., Lopez, R. E., Solar wind dynamic pressure variations and transient magnetospheric signatures, Geophys. Res. Lett., 1989, 16(1): 13.

    Article  Google Scholar 

  10. Gonzalez, W. D., Tsurutani, B. T., Criteria of interplanetary parameters causing intense magnetic storms (Dst<100nT), Planet Space Sci., 1987, 35: 1101.

    Article  Google Scholar 

  11. Craven, J. D., Frank, L. A., Russell, C. T. et al., Global auroral responses to magnetospheric compressions by shocks in the solar wind: Two cases studies (eds. Kamide, Y., Slavin, J. A.), Solar Wind-magnetosphere Coupling, Tokyo: Terra Scientific, 1986, 367–380.

    Google Scholar 

  12. Zhou, X. Y., Tsurutani, B. T., Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shocks), Geophys. Res. Lett., 1999, 26(8): 1097.

    Article  Google Scholar 

  13. Kokubun, S., McPherron, R. L., Russell, C. T., Triggering of substorms by solar wind discontinuities, J. Geophys. Res., 1977, 82: 74.

    Article  Google Scholar 

  14. Petrinec, S. M., Russell, C. T., Near-Earth magnetotail shape and size as determined from the magnetospause flaring angle, J. Geophys. Res., 1996, 101: 137.

    Article  Google Scholar 

  15. Shue, J. H., Kamide. Y, Effects of solar wind density on the westward electrojet, Proceeding of the Fourth International Conference on Substorms, Terra Sci., 1998, 667–678.

  16. Jacquaey, C, Time-variation of the large scale tail magnetic field prior substorm related to solar wind changes, Proceeding of the Third International Conference on Substorms, Versailles, France, 12 –17 May 1996, Europe Space Agency Spec. Publ. ESA SP-389, 1996, 295–300.

  17. Russell, C. T., Wang, J. A., Lepping, R. P. et al., The interplanetary shock of September 24, 1998: Arreval at Earth, J. Geophys. Res., 2000, 105: 25143.

    Article  Google Scholar 

  18. Collier, M. R., Slavin, J. A., Lepping, R. P., et al., Multispacecraft observations of sudden impulses in the magnetotail caused by solar wind pressure discontinuties: Wind and IMP8, J. Geophys, Res., 1998, 103: 17293.

    Article  Google Scholar 

  19. Lui, A. T. Y, Road map to magnetotail domains, Magnetotail Physics (ed. Lui, A. T. Y), Baltimore: Johns Hopkins Univ. Press, 1987, 3–9.

    Google Scholar 

  20. Kalsson, S. B. P., Opgenoorth, H. J., Eglitis, P. et al., Solar wind control of magnetospheric energy content: Substorm quenching and multiple onsets, J. Geophys. Res., 2000, 105: 5335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Hong.

About this article

Cite this article

Hong, M., Wang, X., Chua, D. et al. Auroral substorm response to solar wind pressure shock. Chin. Sci. Bull. 46, 1547–1551 (2001). https://doi.org/10.1007/BF02900578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02900578

Keywords

Navigation