Skip to main content
Log in

PcTGD, a highly expressed gene in stem, is related to water stress in reed (Phragmites communis Trin.)

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

To compare differential gene expression among three ecotypes of reed (Phragmites communis Trin.), dune reed (DR), heavy-salt meadow reed (HSR) and light-salt meadow reed (LSR), mRNA transcripts were displayed by cDNA-AFLP (amplified fragment length polymorphisms). The result revealed that a relatively small number of genes are likely involved in adaptations of DR and HSR to stresses. A full-length cDNA encoding dTDP-D-glucose dehydratase gene (PcTGD) was subsequently cloned from DR. Northern blot analysis showed that it is highly expressed in stem as well as rhizoma of the three ecotypes. However, its expression in DR stem was much higher than that of the other two ecotypes. After the removal of water stress, the expression ofPcTGD was significantly reduced, suggesting that it possibly plays a role in adaptation of DR to water stress through an osmotic regulation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer, J. S., Plant productivity and environment, Science, 1982, 218: 443.

    Article  PubMed  Google Scholar 

  2. Ingram, J., Bartels, D., The molecular basis of dehydration tolerance in plants, Annu. Rev. Plant. Physiol. Plant Mol. Biol., 1996, 47: 377.

    Article  PubMed  CAS  Google Scholar 

  3. Bray, E. A., Molecular responses to water deficit, Plant Physiol., 1993, 103: 1035.

    PubMed  CAS  Google Scholar 

  4. Shinozaki, K., Yamaguchi-Shinozaki, K., Gene expression and signal transduction in water-stress response, Plant Physiol., 1997, 115: 327

    Article  PubMed  CAS  Google Scholar 

  5. Shinozaki, K., Yamaguchi-Shinozaki, K., Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways, Current Opinion in Plant Biology, 2000, 3: 217.

    PubMed  CAS  Google Scholar 

  6. Riccardi, F., Gazeau, P., de Vienne, D. et al., Protein changes in response to progressive water deficit in maize, Plant Physiol., 1998, 117: 1253.

    Article  PubMed  CAS  Google Scholar 

  7. Xiong, L., Ishitani, M., Zhu, J. K., Interaction of osmotic stress, temperature and abscisic acid in the regulation of gene expression inArabidopsis, Plant Physiol., 1999, 119: 205.

    Article  PubMed  CAS  Google Scholar 

  8. Holmberg, N., Beulow, L., Improving stress tolerance in plants by gene transfer, Trends in Plant Science, 1998, 3: 1360.

    Article  Google Scholar 

  9. Alonso-Blanco, C., Koornneef, M., Naturally occurring variation inArabidopsis: an underexploited resource for plant genetics, Trends in Plant Science, 2000, 5: 22.

    Article  PubMed  CAS  Google Scholar 

  10. Haslam, S. M., Variation of population type inphragmites communis Trin., Annals of Botany, 1970, 34: 147.

    Google Scholar 

  11. Haslam, S. M., The performance ofphragmites communis Trin. in relation to temperature, Annals of Botany, 1975, 39: 881.

    Google Scholar 

  12. Matoh, T., Matsushita, N., Takahashi, E., Salt tolerance of the reed plantsPhragmites communis, Physiol. Plant, 1988, 72: 8.

    Article  Google Scholar 

  13. Pu, T. L., Cheng, Y. F., Zhang, C. L., Novel small compound specified in dune reed (phragmites communis Trin.) and its possible role as a protectant on the chloroplasts under stress, Chinese Science Bulletin, 2000, 45: 2062.

    Article  CAS  Google Scholar 

  14. Bachem, C., van der Hoeven, R. de Bruijn, S. et al., Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development, Plant J., 1996, 9: 745.

    Article  PubMed  CAS  Google Scholar 

  15. Kushnir, S., Babiychuk, E., Kampfenkel, K. et al., Characterization ofArabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide, Proc. Natl. Acad. Sci. USA, 92: 10580.

  16. Gygi, S., Rochon, Y., Franza, B. et al., 1999: Correlation between protein and mRNA abundance in yeast, Mol. Cell Biol., 1995, 19: 1720.

    Google Scholar 

  17. Takahashi, S., Katagiri, T., Yamaguchi-Shinozaki, K. et al., AnArabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration, Plant Cell Physiol., 2000, 41: 898.

    Article  PubMed  CAS  Google Scholar 

  18. Bohnert, H., Jensen, R., Strategies for engineering water-stress tolerance in plants, Trends in Biotechnology, 1996, 14: 89.

    Article  CAS  Google Scholar 

  19. Merson-Davis, L. Cundiffe, E., Analysis of five tylosin biosynthetic genes from thetyIIBA region of theStreptomyces fradiae genome, Mol. Microbiol., 1994, 13: 349.

    Article  Google Scholar 

  20. Thorson, J. S., Lo, S. F., Ploux, O. et al., Studies of the biosynthesis of 3,6-dideoyhexoses: Molecular cloning and characterization of the asc (Ascarylose) region from Yersinia pseudotuberculosis serogroup VA, J. Bacteriol., 1994, 176: 5483.

    PubMed  CAS  Google Scholar 

  21. Wang, H. L., Zhang, C. L., Chen, G. C., Osmotica for adaptation to the habitats in different ecotypes of reed plants in the Hexi Corridor, Acta Eco. Sin. (in Chinese), 1994, 14(supp): 56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongbiao Xue or Chenglie Zhang.

About this article

Cite this article

Cheng, Y., Pu, T., Xue, Y. et al. PcTGD, a highly expressed gene in stem, is related to water stress in reed (Phragmites communis Trin.). Chin.Sci.Bull. 46, 850–854 (2001). https://doi.org/10.1007/BF02900437

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02900437

Keywords

Navigation