Skip to main content
Log in

Molecular cancer vaccines: Tumor therapy using antigen-specific immunizations

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Vaccination against tumors promises selective destruction of malignant cells by the host’s immune system. Molecular cancer vaccines rely on recently identified tumor antigens as immunogens. Tumor antigens can be applied in many forms, as genes in recombinant vectors, as proteins or peptides representing T cell epitopes.

Analysis of various aspects indicates some advantage for peptide-based vaccines over the other modalities. Further refinements and extensively monitored clinical trials are necessary to advance molecular cancer vaccines from concepts into powerful therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTL:

cytotoxic T lymphocyte

TA:

tumor antigen

TCR:

T cell receptor

TIL:

tumor infiltrating lymphocyte

References

  1. Ahlers JD, Dunlop N, Ailing DW et al: Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs: granulocyte-macrophage colony-stimulating factor and TNF-alpha synergize with IL-12 to enhance induction of cytotoxic T lymphocytes. J Immunol 158:3947–3958, 1997.

    PubMed  CAS  Google Scholar 

  2. Allsopp CEM, Plebanski M, Gilbert S et al: Comparison of numerous delivery systems for the induction of cytotoxic T lymphocytes by immunization. Eur J Immunol 26:1951–1959, 1996.

    PubMed  CAS  Google Scholar 

  3. Altman JD, Moss PAH, Goulder PJR et al: Phenotypic analysis of antigen-specific T lymphocytes. Science. 274:94–96, 1996.

    PubMed  CAS  Google Scholar 

  4. Anichini A, Mortarini R, Maccalli C et al: Cytotoxic T cells directed to tumor antigens not expressed on normal melanocytes dominate HLA-A2.1-restricted immune repertoire to melanoma. J Immunol 156: 208–217, 1996.

    PubMed  CAS  Google Scholar 

  5. Arienti F, Sule-Suso J, Belli F et al: Limited antitumor T cell response in melanoma patients vaccinated with interleukin-2 gene-transduced allogeneic melanoma cells. Hum Gene Ther 7:1955–1963, 1996.

    PubMed  CAS  Google Scholar 

  6. Barth A, Hoon DS, Foshag LJ et al: Polyvalent melanoma cell vaccine induces delayed-type hypersensitivity and in vitro cellular immune response. Cancer Res 54:3342–3345, 1994.

    PubMed  CAS  Google Scholar 

  7. Bloom MB, Lalley-Perry D, Robbins PE et al: Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 185:453–459, 1997.

    PubMed  CAS  Google Scholar 

  8. Boon T and van der Bruggen P: Human tumor antigens recognized by T lymphocytes. J Exp Med 183:725–729, 1996.

    PubMed  CAS  Google Scholar 

  9. Boon T, Van Snick J, Van Pel A et al: Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. T lymphocyte-mediated cytolysis. J Exp Med 152:1184–1193, 1980.

    PubMed  CAS  Google Scholar 

  10. Bosch GJ, Joosten AM, Kessler JH et al: Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 88:3522–3527, 1996.

    PubMed  CAS  Google Scholar 

  11. Brass N, Heckel D, Sahin U et al: Translation initiation factor eIF-4gamma is encoded by an amplified gene and induces an 173 immune response in squamous cell lung carcinoma. Hum Mol Genet 6:33–39, 1997.

    PubMed  CAS  Google Scholar 

  12. Brändie D, Brasseur F, Weynants P et al: A mutated HLA-A2 Molecule recognized by autologous cytotoxic T lymphocytes on a human renal cell carcinoma. J Exp Med 183:2501–2508, 1996.

    Google Scholar 

  13. Bremers AJ, van der Burg SH, Kuppen PJ et al: The use of Epstein-Barr virus-transformed B lymphocyte cell lines in a peptide-reconstitution assay: identification of CEA-related HLA-A*0301-restricted potential cytotoxic T-lymphocyte epitopes. J Immunother Emphasis Tumor Immunol. 18:77–85, 1995.

    PubMed  CAS  Google Scholar 

  14. Brusic V, Rudy G, Kyne AP et al: MHCPEP: a database of MHC-binding peptides. Nucleic Acids Res 24:242–244, 1996.

    PubMed  CAS  Google Scholar 

  15. Buschle M, Schmidt W, Zauner W et al: Transloading of tumor antigen-derived peptides into antigen-presenting cells. Proc Natl Acad Sci USA 94:3256–3261, 1997.

    PubMed  CAS  Google Scholar 

  16. Bystryn JC, Rigel D, Friedman RJ et al: Prognostic significance of hypopigmentation in malignant melanoma. Arch Dermatol 123:1053–1055, 1987.

    PubMed  CAS  Google Scholar 

  17. Celts E, Tsai V, Crimi C et al: Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci USA. 91:2105–2109, 1994.

    Google Scholar 

  18. Chen PW, Wang M, Bronte Vet al: Therapeutic antitumor response after immunization with a recombinant adenovirus encoding a model tumor-associated antigen. J Immunol 156:224–231, 1996.

    PubMed  CAS  Google Scholar 

  19. Chen YT, Scanlan MJ, Sahin U et al: A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94:1914–1918, 1997.

    PubMed  CAS  Google Scholar 

  20. Chen YT, Stochert E, Jungbluth A et al: Serological analysis of Melan-A(MART-l), a melanocyte-specific protein homogeneously expressed in human melanomas. Proc Natl Acad Sci USA 93:5915–5919, 1996.

    PubMed  CAS  Google Scholar 

  21. Coulie PG, Lehmann F, Lethe B et al: A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92:7976–7980, 1995.

    PubMed  CAS  Google Scholar 

  22. Cox AL, Skipper J, Chen Y et al: Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264:716–718, 1994.

    PubMed  CAS  Google Scholar 

  23. de Bergeyck V, De Plaen E, Chomez P et al: An intracisternal A-particle sequence codes for an antigen recognized by syngeneic cytolytic T lymphocytes on a mouse spontaneous leukemia. Eur J Immunol 24:2203–2212, 1994.

    PubMed  Google Scholar 

  24. De Plaen E, Lurquin C, Van Pel A et al: Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of turn-antigen P91A and identification of the turn-mutation. Proc Natl Acad Sci USA 85:2274–2278, 1988.

    PubMed  Google Scholar 

  25. del Guercio MF, Sidney J, Hermanson G et al: Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J Immunol 154:685–693, 1995.

    PubMed  Google Scholar 

  26. Deres K, Schild H, Wiesmuller KH et al: In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature 342:561–564, 1989.

    PubMed  CAS  Google Scholar 

  27. DiBrino M, Tsuchida T, Turner RV et al: HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 151:5930–5935, 1993.

    PubMed  CAS  Google Scholar 

  28. Disis ML, Gralow JR, Bernhard H et al: Peptide-based, but not whole protein, vaccines elicit immunity to HER-2/neu, an oncogenic self-protein. J Immunol 156:3151–3158, 1996.

    PubMed  CAS  Google Scholar 

  29. Domenech N, Henderson RA, and Finn OJ; Identification of an HLA-A11-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin. J Immunol 155:4766–4774, 1995.

    PubMed  CAS  Google Scholar 

  30. Donnelly JJ, Friedman A, Martinez D et al: Preclinical efficacy of a prototype DNA vaccine: enhanced protection against antigenic drift in influenza virus. Nature Med 1:583–587, 1995.

    PubMed  CAS  Google Scholar 

  31. Dranoff G, Jaffee E, Lazenby A et al: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543, 1993.

    PubMed  CAS  Google Scholar 

  32. Dranoff G and Mulligan RC: Gene transfer as cancer therapy. Adv Immunol 58:417–454, 1995.

    PubMed  CAS  Google Scholar 

  33. Dudley ME and Roopenian DC: Loss of a unique tumor antigen by cytotoxic T lymphocyte immunoselection from a 3-Methylcholanthrene-induced mouse sarcoma reveals secondary unique and shared antigens. J Exp Med 184:441–447, 1996.

    PubMed  CAS  Google Scholar 

  34. Engelhard VH: Structure of peptides associated with class I and class II MHC molecules. Annu Rev Immunol 12:181–207, 1994.

    PubMed  CAS  Google Scholar 

  35. Falk K, Rotzschke O, Stevanovic S et al: Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296, 1991.

    PubMed  CAS  Google Scholar 

  36. Fearon ER, Pardoll DM, Itaya T et al: Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60:397–403, 1990.

    PubMed  CAS  Google Scholar 

  37. Feltkamp MC, Vreugdenhil GR, Vierboom MP et al: Cytotoxic T lymphocytes raised against a subdominant epitope offered as a synthetic peptide eradicate human papillomavirus type 16-induced tumors. Eur J Immunol 25:2638–2642, 1995.

    PubMed  CAS  Google Scholar 

  38. Fisk B, Anderson BW, Gravitt KR et al: Identification of naturally processed human ovarian peptides recognized by tumor-associated CD8+ cytotoxic T lymphocytes. Cancer Res 57:87–93, 1997.

    PubMed  CAS  Google Scholar 

  39. Fleischhauer K, Fruci D, van Endert PM et al: Characterisation of antigenic peptides presented by HLA-B44 molecules on tumor cells expressing the gene MAGE-3. Int J Cancer 68:622–628, 1996.

    PubMed  CAS  Google Scholar 

  40. Fu TM, Ulmer JB, Caulfield MJ et al: Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med 3:362–371, 1997.

    PubMed  CAS  Google Scholar 

  41. Gaugler B, Brouwenstijn N, Vantomme V et al: A new gene coding for an antigen recognized by autologous cytolytic T lym-phocytes on a human renal carcinoma. Immunogenetics 44:323–330, 1996.

    PubMed  CAS  Google Scholar 

  42. Gaugler B, van den Eynde B, van der Bruggen P et al: Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 179:921–930, 1994.

    PubMed  CAS  Google Scholar 

  43. Gilloux Y, Lucas S, Brichard VG et al: A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acteylglucosaminyl-transferase V gene. J Exp Med 183:1173–1183, 1996.

    Google Scholar 

  44. Gjertsen MK, Bakka A, Breivik J et al: Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 346:1399–1400, 1995.

    PubMed  CAS  Google Scholar 

  45. Grey HM, Ruppert J, Vitiello A et al: Class I MHC-peptide interactions: structural requirements and functional implications. Cancer Surv 22:37–49: 37-49, 1995.

    PubMed  CAS  Google Scholar 

  46. Grohmann U, Bianchi R, Ayroldi E et al: A tumor-associated and self antigen peptide presented by dendritic cells may induce T cell anergy in vivo, but IL-12 can prevent or revert the anergic state. J Immunol 158:3593–3602, 1997.

    PubMed  CAS  Google Scholar 

  47. Hahne M, Rimoldi D, Schroeter M et al: Melanoma cell expression of Fas(Apo-l/CD95) ligand: implication for tumor immune escape. Science 274:1363–1366, 1996.

    PubMed  CAS  Google Scholar 

  48. Hakomori SI: Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 52:257–331, 1989.

    PubMed  CAS  Google Scholar 

  49. Hara I, Takechi Y and Houghton AN: Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein. J Exp Med 182:1609–1614, 1995.

    PubMed  CAS  Google Scholar 

  50. Hayashi H, Matsubara H, Yokota T et al: Molecular cloning and characterization of the gene encoding mouse melanoma antigen by cDNA library transfection. J Immunol 149:1223–1229, 1992.

    PubMed  CAS  Google Scholar 

  51. Heike M, Schlaak J, Schulze-Bergkamen H et al: Specificities and functions of CD4+ HLA class II-restricted T cell clones against a human sarcoma. J Immunol 156:2205–2213, 1996.

    PubMed  CAS  Google Scholar 

  52. Herman J, van der Bruggen P, Luescher IF et al: A peptide encoded by the human MAGE3 gene and presented by HLA-B44 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE3. Immunogenetics 43:377–383, 1996.

    PubMed  CAS  Google Scholar 

  53. Herr W, Schneider J, Lohse AW et al: Detection and quantification of blood-derived CD8+ T lymphocytes secreting tumor necrosis factor alpha in response to HLA-A2.1-binding melanoma and viral peptide antigens. J Immunol Methods 191:131–142, 1996.

    PubMed  CAS  Google Scholar 

  54. Hoshino T, Seki N, Kikuchi M et al: HLA class-I-restricted and tumor-specific CTL in tumor-infiltrating lymphocytes of patients with gastric cancer. Int J Cancer 70:631–638, 1997.

    PubMed  CAS  Google Scholar 

  55. Huang AYC, Golumbek P, Ahmadzadeh M et al: Role of bone marrow-derived cells in presenting MHC class-I restricted tumor antigens. Science 264:961–965, 1994.

    PubMed  CAS  Google Scholar 

  56. Huang AYC, Gulden PH, Woods AS et al: The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci USA 93:9730–9735, 1996.

    PubMed  CAS  Google Scholar 

  57. Ikeda H, Lethe B, Lehmann F et al: Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6:197–208, 1997.

    Google Scholar 

  58. Irvine KR, Rao JB, Rosenberg SA et al: Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J Immunol 156:238–245, 1996.

    PubMed  CAS  Google Scholar 

  59. Hock H, Dorsch M, Kunzendorf V et al: Mechanismus of vejection induced by tumor cell-targeted gene transfer of interleukin 2, interleukin 4, interleukin 7, tumor necrosis factor or interferon gamma. Proc Natl Acad Sci USA 90:2774–2778, 1993.

    PubMed  CAS  Google Scholar 

  60. Jacob L, Somasundaram R, Smith W et al: Cytotoxic T-cell clone against rectal carcinoma induced by stimulation of a patient’s peripheral blood mononuclear cells with autologous cultured tumor cells. Int J Cancer 71:325–332, 1997.

    PubMed  CAS  Google Scholar 

  61. Jager E, Ringhoffer M, Dienes HP et al: Granulocyte-macrophage-colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int J Cancer 67:54–62, 1996.

    PubMed  CAS  Google Scholar 

  62. Jager E, Ringhoffer M, Karbach J et al: Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 66:470–476, 1996.

    PubMed  CAS  Google Scholar 

  63. Jesdale BM, Deocampo G, Meisell J, et al: Matrix-based predicition of MHC-binding peptides: the EpiMatrix algorithm, reagent for HIV research In: Vaccines 97. Cold Spring Harbor Laboratory Press, 1997, pp. 1–7. http://www.epimatrix.com/HIV/.

  64. Kang X, Kawakami Y, el-Gamil M et al: Identification of a tyrosinase epitope recognized by HLA-A24-restricted, tumor-infiltrating lymphocytes. J Immunol 155:1343–1348, 1995.

    PubMed  CAS  Google Scholar 

  65. Kaufman H, Schlom J, and Kantor J: A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA). Int J Cancer 48:900–907, 1991.

    PubMed  CAS  Google Scholar 

  66. Kawakami Y, Eliyahu S, Delgado CH et al: Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 91:3515–3519, 1994.

    PubMed  CAS  Google Scholar 

  67. Kawakami Y, Eliyahu S, Delgado CH et al: Identification of a human melanoma antigen recognized by tumor-infiltrating lym-phocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91:6458–6462, 1994.

    PubMed  CAS  Google Scholar 

  68. Kawakami Y, Eliyahu S, Sakaguchi K et al: Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-2-restricted tumor infiltrating lymphocytes. J Exp Med 180:347–352, 1994.

    PubMed  CAS  Google Scholar 

  69. Knight BC, Souberbielle BE, Rizzardi GP et al: Allogeneic murine melanoma cell vaccine: a model for the development of human allogeneic cancer vaccine. Melanoma Research. 6: 1–8, 1996.

    Google Scholar 

  70. Lethe B, van den Eynde B, Van Pel A et al: Mouse tumor rejection antigens P815A and P815B: two epitopes carried by a single peptide. Eur J Immunol 22:2283–2288, 1992.

    PubMed  CAS  Google Scholar 

  71. Luescher IF, Romero P, Kuznetsov D et al: HLA photoaffinity labeling reveals overlapping binding of homologous melanoma-associated gene peptides by HLA-A1, HLA-A29, and HLA-B44. J Biol Chem 271:12463–12471, 1996.

    PubMed  CAS  Google Scholar 

  72. Lurquin C, Van Pel A, Mariame B et al: Structure of the gene of turn-transplantation antigen P91 A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58:293–303, 1989.

    PubMed  CAS  Google Scholar 

  73. Maass G, Schmidt W, Berger M et al: Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: Three consecutive stages may be required for successful tumo r vaccination. Proc Natl Acad Sci USA 92:5540–5544, 1995.

    PubMed  CAS  Google Scholar 

  74. Maeurer MJ, Gollin SM, Martin D et al: Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 98:1633–1641, 1996.

    PubMed  CAS  Google Scholar 

  75. Mandelboim O, Vadai E, Fridkin M et al: Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nature Med 1:1179–1183, 1995.

    PubMed  CAS  Google Scholar 

  76. Mannering SI, McKenzie JL, Fearnley DB et al: HLA-DRl-restricted bcr-abl (b3a2)-specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigen-presenting cells exposed to b3a2 containing cell lysates. Blood 90:290–297, 1997.

    PubMed  CAS  Google Scholar 

  77. Marchand M, Weynants P, Rankin E et al: Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer 63:883–885, 1995.

    PubMed  CAS  Google Scholar 

  78. Matzinger P: Tolerance,danger, and the extended family. Annu Rev Immunol 12:991–1045, 1994.

    PubMed  CAS  Google Scholar 

  79. Mazzocchi A, Storkus WJ, Traversari C et al: Multiple melanoma-associated epitopes recognized by HLA-A3-restricted CTLs and shared by melanomas but not melanocytes. J Immunol 157:3030–3038, 1996.

    PubMed  CAS  Google Scholar 

  80. McHeyzer-Williams MG, Altman JD, and Davis MM: Tracking antigen-specific helper T cell responses. Curr Opin Immunol 8:278–284, 1996.

    PubMed  CAS  Google Scholar 

  81. Mclntyre CA, Reees RC, Platts KE et al: Identification of peptide epitopes of MAGE-1,-2,-3 that demonstrate HLA-A3-specific binding. Cancer Immunol Immunother 42:246–250, 1996.

    Google Scholar 

  82. Meadows L, Wang W, den Haan JM et al: The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity 6:273–281, 1997.

    PubMed  CAS  Google Scholar 

  83. Mizoguchi H, O’Shea JJ, Longo DL et al: Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice [see comments]. Science 258:1795–1798, 1992.

    PubMed  CAS  Google Scholar 

  84. Musani P, Modesti A, Giovarelli M et al: Cytokines, tumor cell death and immunogenicity: a question of choice. Immunology Today 18:32–36, 1997.

    Google Scholar 

  85. Noguchi Y, Richards EC, Chen YT et al: Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma. Proc Natl Acad Sci USA 92:2219–2223, 1995.

    PubMed  CAS  Google Scholar 

  86. Oettgen HF, Old LJ: The history of cancer immunotherapy. In: Biologic therapy of cancer, principles and practice. (Eds: De Vita VT, Helman S, Rosenberg SA) JB Lippincott, 1991, pp. 87–119.

  87. Ottenhoff THM, Geluk A, Toebes M et al: A sensitive fluorometric assay for quantitatively measuring specific peptide binding to HLA class I and class II molecules. J Immunol Methods 200:89–97, 1997.

    PubMed  CAS  Google Scholar 

  88. Pan ZK, Ikonomidis G, Lazenby A et al: A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nature Med 1:471–477, 1995.

    PubMed  CAS  Google Scholar 

  89. Pardoll DM: Paracrine cytokine adjuvants in cancer immunotherapy. Ann Rev Immunol 13:399–415, 1995.

    CAS  Google Scholar 

  90. Pardoll DM and Beckerleg AM: Exposing the immunology of naked DNA vaccines. Immunity 3:165–169, 1995.

    PubMed  CAS  Google Scholar 

  91. Parker KC, Shields M, DiBrino M et al: Peptide binding to MHC class I molecules: implications for antigenic peptide prediction. Immunol Res 14:34–57, 1995. http://bimas.dcrt.nih.gov/molbio/hla_bind/

    PubMed  CAS  Google Scholar 

  92. Parkhurst MR, Salgaller ML, Southwood S et al: Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp 100 modified at HLA-A*0201-binding residues. J Immunol 157:2539–2548, 1996.

    PubMed  CAS  Google Scholar 

  93. Prehn RT: Immunity to methylcholantrene-induced sarcomas. J Natl Cancer Inst 18:769–778, 1957.

    PubMed  CAS  Google Scholar 

  94. Puccetti P, Bianchi R, Fioretti MC et al: Using a skin test assay to determine tumor-specific CD8+ reactivity. Eur J Immunol 24:1446–1452, 1994.

    PubMed  CAS  Google Scholar 

  95. Rammensee HG, Falk K, and Rotzschke O: Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11:213–244, 1993.

    PubMed  CAS  Google Scholar 

  96. Rammensee HG, Friede T, and Stevanovic S: MHC ligands and peptide motifs: first listing. Immunogenetics 41:178–228, 1995.

    PubMed  CAS  Google Scholar 

  97. Ressing ME, Sette A, Brandt RM et al: Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 154:5934–5943, 1995.

    PubMed  CAS  Google Scholar 

  98. Restifo NP: The new vaccines: building viruses that elicit antitumor immunity. Curr Opin Immunol 8:658–663, 1996.

    PubMed  CAS  Google Scholar 

  99. Rettig WJ and Old LJ: Immunogenetics of human cell surface differentiation. Ann Rev Immunol 7:481–511, 1989.

    CAS  Google Scholar 

  100. Robbins PF, el-Gamil M, Li YF et al: A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183:1185–1192, 1996.

    PubMed  CAS  Google Scholar 

  101. Robbins PF, el-Gamil M, Li YF et al: Cloning of a new gene encoding an antigen recognized by melanoma-specific HLA-A24-restricted tumor-infiltrating lymphocytes. J Immunol 154:5944–5950, 1995.

    PubMed  CAS  Google Scholar 

  102. Rock KL: A new foreign policy: MHC class I molecules monitor the outside world. Immunology Today 17:131–137, 1996.

    PubMed  CAS  Google Scholar 

  103. Rosenberg SA: Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today 4:175–182, 1997.

    Google Scholar 

  104. Rosenberg SA, Lotze MT, and Mule JJ: New approaches to the immunotherapy of cancer using interleukin-2. Ann Intern Med 108:853–864, 1988.

    PubMed  CAS  Google Scholar 

  105. Rosenberg SA, Packard BS, and Aebersold PM: Special report: use of tumor infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680, 1988.

    PubMed  CAS  Google Scholar 

  106. Roth C, Rochlitz C, and Kourilsky P: Immune response against tumors. Adv Immunol 57:281–351, 1994.

    PubMed  CAS  Google Scholar 

  107. Rous P: An experimental comparison of transplanted tumor and a transplanted normal tissue capable of growth. J Exp Med 12:344–365, 1910.

    Google Scholar 

  108. Röcken M, Urban JE and Shevach EM: Infection breaks T cell tolerance. Nature 359:79–82, 1992.

    PubMed  Google Scholar 

  109. Sahin U, Tureci O, Schmitt H et al: Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810–11813, 1995.

    PubMed  CAS  Google Scholar 

  110. Salgaller ML: Monitoring of cancer patients undergoing active or passive immunotherapy. J Immunother 20:1–14, 1997.

    PubMed  CAS  Google Scholar 

  111. Schlegel PG, Aharoni R, Chen Y et al: A synthetic random basic copolymer with promiscuous binding to class II major histocompatibility complex molecules inhibits T-cell proliferative responses to major and minor histocompatibility antigens in vitro and confers the capacity to prevent murine graft-versus-host disease in vivo. Proc Natl Acad Sci USA 93:5061–5066, 1996.

    PubMed  CAS  Google Scholar 

  112. Schmidt W, Buschle M, Zauner W et al: Cell-free tumor antigen peptide-based cancer vaccines. Proc Natl Acad Sci USA 94:3262–3267, 1997.

    PubMed  CAS  Google Scholar 

  113. Schmidt W, Steinlein P, Buschle M et al: Transloading of tumor cells with foreign MHC I peptide ligand: a novel general strategy for the generation of potent cancer vaccines. Proc Natl Acad Sci USA 93:9759–9763, 1996.

    PubMed  CAS  Google Scholar 

  114. Schweighoffer T: Tumor cells expressing a recall antigen are powerful cancer vaccines. Eur J Immunol 26:2559–2564, 1996.

    PubMed  CAS  Google Scholar 

  115. Schweighoffer T, Berger M, Buschle M et al: Adenovirus-enhanced receptor-mediated transferrinfection for the generation of tumor vaccines. Cytokines and Molecular Therapy 2/3:185–191, 1996.

    PubMed  CAS  Google Scholar 

  116. Sette A, Sidney J, del Guercio MF et al: Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Mol Immunol 31:813–822, 1994.

    PubMed  CAS  Google Scholar 

  117. Sette A, Vitiello A, Reherman B et al: The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 153:5586–5592, 1994.

    PubMed  CAS  Google Scholar 

  118. Shen R, Su ZZ, Olsson CA et al: Identification of the human prostatic carcinoma oncogene PTI-1 by rapid expression cloning and differential RNA display. Proc Natl Acad Sci USA 92:6778–6782, 1995.

    PubMed  CAS  Google Scholar 

  119. Sibille C, Chomez P, Wildmann C et al: Structure of the gene of turn-transplantation antigen P198: a point mutation generates a new antigenic peptide. J Exp Med 172:35–45, 1990.

    PubMed  CAS  Google Scholar 

  120. Sidney J, Grey HM, Kubo RT et al: Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunology Today 17:261–266, 1996.

    PubMed  CAS  Google Scholar 

  121. Skipper JCA, Hendrickson RC, Gulden PH et al: An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 183:527–534, 1996.

    PubMed  CAS  Google Scholar 

  122. Song ES, Lee V, Surh CD et al: Antigen presentation in retroviral vector-mediated gene transfer in vivo. Proc Natl Acad Sci USA 94:1943–1948, 1997.

    PubMed  CAS  Google Scholar 

  123. Szikora JP, Van Pel A, and Boon T: Turn-mutation P35B generates the MHC-binding site of a new antigenic peptide. Immunogenetics 37:135–138, 1993.

    PubMed  CAS  Google Scholar 

  124. Tan KC, Hosoi J, Grabbe S et al: Epidermal cell presentation of tumor-associated antigens for induction of tolerance. J Immunol 153:760–767, 1994.

    PubMed  CAS  Google Scholar 

  125. Tepper RI and Mule JJ: Experimental and clinical studies of cytokine gene-modified tumor cells. Review. Human Gene Therapy 5:153–164, 1994.

    PubMed  CAS  Google Scholar 

  126. Tepper RI, Pattengale PK, and Leder P: Murine Interleukin-4 displays potent anti-tumor activity in vivo. Cell 57:503–512, 1989.

    PubMed  CAS  Google Scholar 

  127. Theobald M, Biggs J, Dittmer D et al: Targeting p53 as a general tumor antigen. Proc Natl Acad Sci USA 92:11993–11997, 1995.

    PubMed  CAS  Google Scholar 

  128. Toes REM, Blom RJJ, Offringa R et al: Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J Immunol 156:3911–3918, 1996.

    PubMed  CAS  Google Scholar 

  129. Topalian SL, Rivoltini L, Mancini M et al: Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci USA 91:9461–9465, 1994.

    PubMed  CAS  Google Scholar 

  130. Townsend AR, Rothbard J, Gotch FM et al: The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959–968, 1986.

    PubMed  CAS  Google Scholar 

  131. Tsang KY, Zaremba S, Nieroda CA et al: Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87:982–990, 1995.

    PubMed  CAS  Google Scholar 

  132. Tureci O, Sahin U, Schobert I et al: The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer. Res 56:4766–4772, 1996.

    PubMed  CAS  Google Scholar 

  133. Tureci O, Schmitt H, Fadle N et al: Molecular Definition of a Novel Human Galectin Which Is Immunogenic in Patients with Hodgkin’s Disease. J Biol Chem 272:6416–6422, 1997.

    PubMed  CAS  Google Scholar 

  134. Ulmer JB, Donnelly JJ, Parker SE et al: Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749, 1993.

    PubMed  CAS  Google Scholar 

  135. Valmori D, Lienard D, Waanders G et al: Analysis of MAGE-3-specific cytolytic T lymphocytes in human leukocyte antigen-A2 melanoma patients. Cancer Res 57:735–741, 1997.

    PubMed  CAS  Google Scholar 

  136. van den Eynde B, Lethe B, Van Pel A et al: The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 173:1373–1384, 1991.

    PubMed  Google Scholar 

  137. van den Eynde B, Mazarguil H, Lethe B et al: Localization of two cytotoxic T lymphocyte epitopes and three anchoring residues on a single nonameric peptide that binds to H-2Ld and is recognized by cytotoxic T lymphocytes against mouse tumor P815. Eur J Immunol 24:2740–2745, 1994.

    PubMed  Google Scholar 

  138. van den Eynde B, Peeters O, De Backer O et al: A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med 182:689–698, 1995.

    PubMed  Google Scholar 

  139. van der Bruggen P, Bastin J, Gajewski T et al: A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 24:3038–3043, 1994.

    PubMed  Google Scholar 

  140. van der Bruggen P, Szikora JP, Boel P et al: Autologous cytolytic T lymphocytes recognize a MAGE-1 nonapeptide on melanomas expressing HLA-Cw*1601*. Eur J Immunol 24:2134–2140, 1994.

    PubMed  Google Scholar 

  141. van der Bruggen P, Traversari C, Chomez P et al: A gene encoding an antigen recognised by cytolytic T lymphocytes on a human melanoma. Science 2:1643–1647, 1991.

    Google Scholar 

  142. van der Burg SH, Visseren MJ, Brandt RM et al: Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J Immunol 156:3308–3314, 1996.

    PubMed  Google Scholar 

  143. Vitiello A, Ishioka G, Grey HM et al: Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. I. Induction of a primary cytotoxic T lymphocyte response in humans. J Clin Invest 95:341–349, 1995.

    PubMed  CAS  Google Scholar 

  144. Vitiello A, Sette A, Yuan L et al: Comparison of cytotoxic T lymphocyte responses induced by peptide or DNA immunization: implications on immunogenicity and immunodominance. Eur J Immunol 27:671–678, 1997.

    PubMed  CAS  Google Scholar 

  145. Wang RF, Appella E, Kawakami Y et al: Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 184:2207–2216, 1996.

    PubMed  CAS  Google Scholar 

  146. Wang RE, Parkhurst M, Kawakami Yet al: Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med 183:1131–1140, 1996.

    PubMed  CAS  Google Scholar 

  147. Wang RF, Robbins PF, Kawakami Y et al: Identification of a gene encoding a melanoma tumor antigen recognized by HLA-A31-restricted tumor-infiltrating lymphocytes. J Exp Med 181:799–804, 1995.

    PubMed  CAS  Google Scholar 

  148. Wentworth PA, Vitiello A, Sidney J et al: Differences and similarities in the A2.1-restricted cytotoxic T cell repertoire in humans and human leukocyte antigen-transgenic mice. Eur J Immunol 26:97–101, 1996.

    PubMed  CAS  Google Scholar 

  149. Widmann C, Romero P, Maryanski JL et al: T helper epitopes enhance the cytotoxic response of mice immunized with MHC class I-restricted malaria peptides. J Immunol Methods 155:95–99, 1992.

    PubMed  CAS  Google Scholar 

  150. Wolfel T, Hauer M, Schneider J et al: A pl6INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284, 1995.

    PubMed  CAS  Google Scholar 

  151. Wolfel T, Klehmann E, Muller C et al: Lysis of human melanoma cells by autologous cytolytic T cell clones. Identification of human histocompatibility leukocyte antigen A2 as a restriction element for three different antigens. J Exp Med 170:797–810, 1989.

    PubMed  CAS  Google Scholar 

  152. Wolfel T, Van Pel A, Brichard V et al: Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 24:759–764, 1994.

    PubMed  CAS  Google Scholar 

  153. Wortzel RD, Phillips C, and Schreiber H: Multiple tumor-specific antigens expressed on a single tumor cell. Nature 304:165–167, 1983.

    PubMed  CAS  Google Scholar 

  154. Wu TC, Huang AYC, Jaffee EM et al: A reassessment of the role of B7-1 expression in tumor rejection. J Exp Med 182:1415–1421, 1995.

    PubMed  CAS  Google Scholar 

  155. Zinkernagel RM and Doherty PC: Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248:701–702, 1973.

    Google Scholar 

  156. Zitvogel L, Mayordomo JI, Tjandrawan T et al: Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 183:87–97, 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Schweighoffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweighoffer, T. Molecular cancer vaccines: Tumor therapy using antigen-specific immunizations. Pathol. Oncol. Res. 3, 164–176 (1997). https://doi.org/10.1007/BF02899917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899917

Key words

Navigation