Skip to main content
Log in

Detection of human papillomavirus types by the polymerase chain reaction and the differentiation between high-risk and low-risk cervical lesions

  • Original Articles
  • Published:
Virchows Archiv B

Summary

By means of a consensus polymerase chain reaction (PCR) method, the prevalence of HPV types was determined in cervical biopsies from 137 women referred to the gynecological outpatient clinic for colposcopy because of an abnormal cervical smear. The prevalence of HPV was 80.3%. There was a statistically highly significant rise in the prevalence of the oncogenic HPV types (16, 18, 31, 33) with increasing severity of cervical intraepithelial neoplasia (CIN I to III), indicating a role for these HPV types in the pathogenesis of cervical cancer. The prevalence of other HPV types decreased significantly with the severity of the lesion, suggesting that these HPV types play a less significant role in this process. These data indicate that HPV typing with PCR may be a valuable tool for distinguishing between highrisk and low-risk cervical lesions. Furthermore, our results suggest that the detection of HPV types by consensus PCR in the cervix of patients with an abnormal smear but without histologically detectable CIN is a useful tool for predicting which of these patiens will eventually develop CIN. Finally, a relatively low percentage (3%) of HPV double infections is reported in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arends MJ, Donaldson YK, Duvall E, Wyllie AH, Bird CC (1991) HPV in full thickness cervical biopsies: high prevalence in CIN 2 and CIN 3 detected by a sensitive PCR method. J Pathol 165:301–309

    Article  PubMed  CAS  Google Scholar 

  • Bauer HM, Yi Ting MS, Greer CE, Chambers JC, Tashiro CJ, Chimera J, Reingold A, Manos MM (1991) Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA 265:472–477

    Article  PubMed  CAS  Google Scholar 

  • Brandsma J, Burk R, Lancaster W, Pfister H, Schiffman MH (1989) Interlaboratory variation as an explanation for varying prevalence estimates of human papillomavirus infection. Int J Cancer 43:260–262

    Article  PubMed  CAS  Google Scholar 

  • Brule AJC van den, Snijders PJF, Gordijn RLJ, Bleker OP, Meijer CJLM, Walboomers JMM (1990) General primer mediated polymerase chain reaction permits the detection of sequenced and still unsequenced human papillomavirus genotypes in cervical scrapes and carcinomas. Int J Cancer 45:644–649

    Article  PubMed  Google Scholar 

  • Brule AJC van den, Walboomers JMM, Du Maine M, Kenemans P, Meijer CJLM (1991) Difference in prevalence of human papillomavirus genotypes in cytomorphologically normal cervical smears is associated with a history of cervical intraepithelial neoplasia. Int J Cancer 48:404–408

    Article  Google Scholar 

  • Campion MJ, McCance DJ, Cuzick J, Singer A (1986) Progressive potential of mild cervical atypia: prospective cytological, colposcopic, and virological study. The Lancet ii: 237–240

    Article  Google Scholar 

  • Cornelissen MTE, van den Tweel JG, Struyk APHB, Jebbink MF, Briët M, van der Noordaa J, ter Schegget J (1989) Localization of human papillomavirus type 16 DNA using the polymerase chain reaction in the cervix uteri of women with cervical intraepithelial neoplasia. J Gen Virol 70:2555–2562

    PubMed  Google Scholar 

  • Cornelissen MTE, van den Tweel JG, Struyk APHB, Briel MA, Smit HL, van der Noordaa J, ter Schegget J (1990) Distribution of HPV16 DNA in the cervix uteri containing cervical dysplasia. In: Howley PM, Broker TR (eds) Papillomaviruses. UCLA Symp Mol Cell Biol 124: Wiley-Liss, New York, pp 25–32

    Google Scholar 

  • Crook T, Wrede D, Vousden KH (1991) p53 Mutation in HPV negative human cervical carcinoma cell lines. Oncogene 6:873–875

    PubMed  CAS  Google Scholar 

  • Crum CP, Mitao M, Levine RU, Silverstein S (1985) Cervical papillomaviruses segregate within morphologically distinct precancerous lesions. J Virol 54:675–681

    PubMed  CAS  Google Scholar 

  • Fujinaga Y, Shimada M, Okazawa K, Fukushima M, Kato I, Fujinaga K (1991) Simultaneous detection and typing of genital human papillomavirus DNA using the polymerase chain reaction. J Gen Virol 72:1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Greer CE, Peterson SL, Kiviat NB, Manos MM (1991) PCR amplification from paraffin-embedded tissues: effects of fixative and fixation time. Am J Clin Pathol 95:117–124

    PubMed  CAS  Google Scholar 

  • Kiyabu MT, Shibata D, Arnheim N, Martin WJ, Fitzgibbons PL (1989) Detection of human papillomavirus in formalin-fixed, invasive squamous carcinomas using the polymerase chain reaction. Am J Surg Pathol 13:221–224

    PubMed  CAS  Google Scholar 

  • Koutsky L (1991) Role of epidemiology in defining events that influence transmission and natural history of anogenital papillomavirus infections. J Nat Cancer Inst 83:978–979

    Article  PubMed  CAS  Google Scholar 

  • Koutsky LA, Galloway DA, Holmes KK (1988) Epidemiology of genital human papillomavirus infection. Epidemiologic Rev 10:122–163

    CAS  Google Scholar 

  • Ley C, Bauer HM, Reingold A, Schiffman MH, Chambers JC, Tashiro CJ, Manos MM (1991) Determinants of genital human papillomavirus infection in young women. J Natl Cancer Inst: 997–1003

  • Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM (1989) The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7:209–214

    CAS  Google Scholar 

  • McCance DJ, Kopan R, Fuchs E, Laimins LA (1988) Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc Natl Acad Sci USA 85:7169–17173

    Article  PubMed  CAS  Google Scholar 

  • Munoz N, Bosch X, Kaldor JM (1988) Does human papillomavirus cause cervical cancer? The state of the epidemiological evidence. Br J Cancer 57:1–5

    PubMed  CAS  Google Scholar 

  • Nuovo GJ (1990) Human papillomavirus DNA in genital tract lesions histologically negative for condylomata; analysis by in situ, Southern blot hybridisation and the polymerase chain reaction. Am J Surg Pathol 14:643–651

    PubMed  CAS  Google Scholar 

  • Nuovo GJ, Darfler Mm, Impraim CC, Bromley SE (1991) Occurrence of multiple types of human papillomavirus in genital tract lesions. Am J Pathol 138:53–58

    PubMed  CAS  Google Scholar 

  • Reid R, Greenberg M, Jenson AB, Husain M, Willett J, Daoud Y, Temple G, Stanhope CR, Sherman AI, Phipps GD, Lorincz AT (1987) Sexually transmitted papillomaviral infections. Am J Obstet Gynecol 156:212–222

    PubMed  CAS  Google Scholar 

  • Resnick RM, Cornelissen MTE, Wright DK, Eichinger GH, Fox HS, ter Schegget J, Manos MM (1990) Detection and typing of HPV in archival cervical cancer specimens using DNA amplification consensus primers. J Nat Cancer Inst 82:1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Riou G, Favre M, Jeannel D, Bourhis J, le Doussal V, Orth G (1990) Association between poor prognosis in early-stage invasive cervival carcinomas and non-detection of HPV DNA. Lancet 335:1171–1174

    Article  PubMed  CAS  Google Scholar 

  • Roman A, Five KH (1989) Human papillomaviruses: Are we ready to type? Clin Microbiol Rev 2:166–190

    PubMed  CAS  Google Scholar 

  • Schneider A, Kraus H, Schuhmann R, Gissmann L (1985) Papillomavirus infection of the lower genital tract: Detection of viral DNA in gynecological swabs. Int J Cancer 35:443–448

    Article  PubMed  CAS  Google Scholar 

  • Syrjänen K, Syrjänen S (1989) Concept of the existence of human papillomavirus (HPV) DNA in histologically normal squamous epithelium of the genital tract should be re-evaluated. Acta Obstet Gynecol Scand 68:613–617

    Article  PubMed  Google Scholar 

  • Tham KM, Chow VTK, Singh P, Tock EPC, Chng KC, LimTan SK, Sng ITY, Bernard HU (1991) Diagnostic sensitivity of polymerase chain reaction and Southern blot hybridisation for the detection of human papillomavirus DNA in biopsy specimens from cervical lesions. Am J Clin Pathol 95:638–646

    PubMed  CAS  Google Scholar 

  • Twiggs LB, Okagaki T, Clark B, Fukushima M, Ostrow R, Faras A (1988) A clinical, histopathologic, and molecular biologic investigation of vulva intraepithelial neoplasia. Int J Gynecol Pathol 7:48–55

    Article  PubMed  CAS  Google Scholar 

  • Vermund SH, Schiffman MH, Goldberg GH, Ritter DB, Weltman A, Burk RD (1989) Molecular diagnosis of genital human papillomavirus infection: comparison of two methods used to collect exfoliated cervical cells in the genital tract. Am J Obstet Gynecol 160:304–308

    PubMed  CAS  Google Scholar 

  • Vousden KH (1989) Human papillomaviruses and cervical carcinoma. Cancer Cells 1:43–49

    PubMed  CAS  Google Scholar 

  • Wilczynski SP, Pearlman L, Walker J (1988) Identification of HPV 16 early genes retained in cervical carcinomas. Virology 166:624–627

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa H, Kawana T, Mizuno M, Yoshikura H, Iwamoto A (1991) Detection and typing of multiple genital human papillomaviruses by DNA amplification with consensus primers. Jpn J Cancer Res 2:524–531

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornelissen, M.T.E., Bots, T., Briët, M.A. et al. Detection of human papillomavirus types by the polymerase chain reaction and the differentiation between high-risk and low-risk cervical lesions. Virchows Archiv B Cell Pathol 62, 167–171 (1992). https://doi.org/10.1007/BF02899679

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899679

Key words

Navigation