Skip to main content
Log in

Innervation and maturation of muscular tissue in testicular teratomas in strain 129/Sv-ter mice

  • Published:
Virchows Archiv B

Summary

In strain 129/Sv-ter mice, teratomas develop spontaneously during the 13th day of gestation. These testicular germ cell tumors exhibit characteristics of different germ layers closely resembling normal embryonic tissue. We investigated the interrelationship between nervous and muscular tissues (often found side by side) in teratomas of 4-week-old 129/Sv -ter mice. In well-differentiated mouse teratomas, histochemically and immunohistochemically distinct muscle fiber types could be distinguished, but not with all reactions. According to its aerobic oxidative capacity, teratoma muscle tissue was comparable with normal muscles. However, with respect to myosin-related properties, fiber type differentiation was incomplete. The muscle fibers-generally arranged in bundles contained one centrally located endplate which was contacted mostly by a single nerve terminal. From this, proper endplate zones within the fiber bundles were formed. Occasionally “type grouping” was encountered, suggesting collateral axonal branching paralleled by synapse elimination. Together with the earlier in vivo observation of muscular contractions, we assume that teratoma muscle fibers are innervated by nerve cells (within the nervous tissue compartments) corresponding to spinal motoneurons. Thus, myogenesis, maturation and innervation of skeletal muscular tissue in mouse teratomas are largely comparable to normal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alnaqeeb MA, Goldspink G (1987) Changes in fibre type, number and diameter in developing and ageing skeletal muscle. J Anat 153:31–45

    PubMed  CAS  Google Scholar 

  • Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli NC, Fogh J (1984) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Lab Invest 50:147–162

    PubMed  CAS  Google Scholar 

  • Atkin NB (1973) High chromosome numbers of seminomata and malignant teratomata of the testis: a review of data on 103 tumours. Br J Cancer 28:275–278

    PubMed  CAS  Google Scholar 

  • Bennett MR, Pettigrew AG (1974) The formation of synapses in striated muscle during development. J Physiol (Lond) 241: 515–545

    CAS  Google Scholar 

  • Berchtold MW, Means AR (1985) The Ca2+-binding protein parvalbumin: Molecular cloning and developmental regulation of mRNA abundance. Proc Natl Acad Sci USA 82:1414–1418

    Article  PubMed  CAS  Google Scholar 

  • Betz W (1976) The formation of synapses between chick embryo skeletal muscle and ciliary ganglia grown in vitro. J Physiol (Lond) 254:63–73

    CAS  Google Scholar 

  • Bevan S, Steinbach JH (1977) The distribution of α-bungarotoxin binding sites on mammalian skeletal muscle developing in vitro. J Physiol (Lond) 267:195–213

    CAS  Google Scholar 

  • Bird MM, James DW (1974) An ultrastructural and electrophysiological study of the development of neuro-muscular junctions between previously dissociated foetal rat cells in vitro. Cell Tiss Res 155:269–282

    Article  CAS  Google Scholar 

  • Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379

    PubMed  CAS  Google Scholar 

  • Castedo SMMJ, Oosterhuis JW, de Jong B, Seruca R, Dam A, Buist J, Schraffordt Koops H, Sleijfer DTh (1988) A residual mature teratoma with a more balanced karyotype than the primary testicular nonseminoma? Cancer Genet Cytogenet 32:51–57

    Article  PubMed  CAS  Google Scholar 

  • Celio MR, Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature 297:504–506

    Article  PubMed  CAS  Google Scholar 

  • Celio MR, Baier W, Schärer L, De Viragh PA, Gerday Ch (1988) Monoclonal antibodies directed against the calcium binding protein parvalbumin. Cell Calcium 9:81–86

    Article  PubMed  CAS  Google Scholar 

  • Condon K, Silberstein L, Blau HM, Thompson WJ (1990a) Development of muscle fiber types in the prenatal rat hindlimb. Dev Biol 138:256–274

    Article  PubMed  CAS  Google Scholar 

  • Condon K, Silberstein L, Blau HM, Thompson WJ (1990b) Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. Dev Biol 138:275–295

    Article  PubMed  CAS  Google Scholar 

  • Connold AL, Vrbova G (1990) The effect of muscle activity on motor unit size in partially denervated rat soleus muscles. Neurosci 34:525–532

    Article  CAS  Google Scholar 

  • Crain SM, Alfei L, Peterson ER (1970) Neuromuscular transmission in cultures of adult human and rodent skeletal muscle after innervation in vitro by fetal rodent spinal cord. J Neurobiol 1:471–489

    Article  PubMed  CAS  Google Scholar 

  • Curless RG, Nelson MB (1976) Developmental patterns of rat muscle histochemistry. J Embryol Exp Morph 36:355–363

    PubMed  CAS  Google Scholar 

  • Damjanov I, Knowles BB, Solter D (eds) (1983) The human teratoma. Experimental and clinical biology. Human Press, Clifton, New Jersey

    Google Scholar 

  • DeLozier CD, Walt H, Engel E, Vuagnat P (1987) Cytogenetic studies of human testicular germ cell tumors. Int J Androl 10:69–77

    Google Scholar 

  • Dhoot GK (1985) Initiation of differentiation into skeletal muscle fiber types. Muscle Nerve 8:307–316

    Article  PubMed  CAS  Google Scholar 

  • Diamond J, Miledi R (1962) A study of foetal and new-born rat muscle fibres. J Physiol (Lond) 162:393–408

    CAS  Google Scholar 

  • Dixon FJ, Moore RA (1952) Tumors of the male sex organs. Armed Forces Institute of Pathology, Washington DC

    Google Scholar 

  • Emmerich P, Jauch A, Hofmann MC, Cremer T, Walt H (1989) Interphase cytogenetics in paraffin sections from human testicular germ cell tumor xenografts and in corresponding cultured cells. Lab Invest 61:235–242

    PubMed  CAS  Google Scholar 

  • Fladby T (1987) Postnatal loss of synaptic terminals in the normal mouse soleus muscle. Acta Physiol Scand 129:229–238

    PubMed  CAS  Google Scholar 

  • Goldspink G (1972) Postembryonic growth and differentiation of striated muscle. In: Bourne GH (ed) The structure and function of muscle, 2nd edn. Academic Press, New York, pp 179–236

    Google Scholar 

  • Grinnell AD, Herrera AA (1981) Specificity and plasticity of neuromuscular connections: long-term regulation of motoneuron function. Progr Neurobiol 17:203–282

    Article  Google Scholar 

  • Guth L (1968) “Trophic” influences of nerve on muscle. Physiol Rev 48:645–687

    PubMed  CAS  Google Scholar 

  • Guth L, Samaha FJ (1970) Procedure for the histochemical demonstration of actomyosin ATPase. Exp Neurol 28:365–367

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Berchtold MW, Rowlerson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci 79:7243–7247

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Celio MR (1987) Immunolocalization of parvalbumin. Meth Enzymol 139:552–570

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Vicini S, Schuetze SM (1988) Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle. Nature 335:66–68

    Article  PubMed  CAS  Google Scholar 

  • Jolesz F, Sreter FA (1981) Development, innervation, and activity-pattern induced changes in skeletal muscle. Ann Rev Physiol 43:531–552

    Article  CAS  Google Scholar 

  • Jones R (1981) The influence of electrical activity on the development of newborn innervated rat muscles. Pflügers Arch 391:68–73

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221

    PubMed  CAS  Google Scholar 

  • Karpati G, Eisen AA, Carpenter S (1975) Subtypes of the histochemical type I muscle fibers. J Histochem Cytochem 23:89–91

    PubMed  CAS  Google Scholar 

  • Käser L, Müntener M (1989) Delayed muscle fiber transformation after foreign-reinnervation of excessive muscle tissue. Anat Rec 223:347–355

    Article  PubMed  Google Scholar 

  • Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403

    Article  PubMed  Google Scholar 

  • Koelle GB, Friedenwald JS (1949) A histochemical method for localizing cholinesterase activity. Proc Soc Exp Biol Med 70:617–622

    PubMed  CAS  Google Scholar 

  • Lewis MR (1915) Rhythmical contraction of the skeletal muscle tissue observed in tissue cultures. Am J Physiol 38:153–161

    Google Scholar 

  • Lømo T, Massoulié J, Vigny M (1985) Stimulation of denervated rat soleus muscle with fast and slow activity patterns induces different expression of acetylcholinesterase molecular forms. J Neurosci 5:1180–1187

    PubMed  Google Scholar 

  • Mostofi FK, Price EB jr (1973) Tumors of the male genital system. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  • Müntener M (1979) Variable pH dependence of the myosin ATPase in different muscles of the rat. Histochemistry 62:299–304

    Article  PubMed  Google Scholar 

  • Müntener M (1982) A rapid and reversible muscle fiber transformation in the rat. Exp Neurol 77:668–678

    Article  PubMed  Google Scholar 

  • Müntener M, Zenker W (1986) Fiber type and non-endplate acetylcholinesterase in normal and experimentally altered muscles. Anat Embryol 173:377–383

    Article  PubMed  Google Scholar 

  • Müntener M, Rowlerson AM, Berchtold MW, Heizmann CW (1987a) Changes in the concentration of the calcium-binding parvalbumin in cross-reinnervated rat muscles. J Biol Chem 262:465–469

    PubMed  Google Scholar 

  • Müntener M, Van Hardeveld C, Everts ME, Heizmann CW (1987b) Analysis of the Ca2+-binding parvalbumin in rat skeletal muscles of different thyroid states. Exp Neurol 98:529–541

    Article  PubMed  Google Scholar 

  • Narusawa M, Fitzsimons RB, Izumo S, Nadal-Ginard B, Rubinstein NA, Kelly AM (1987) Slow myosin in developing rat skeletal muscle. J Cell Biol 104:447–459

    Article  PubMed  CAS  Google Scholar 

  • Pestronk A, Drachman DB (1978) A new stain for quantitative measurement of sprouting at neuromuscular junctions. Muscle Nerve 4:70–74

    Article  Google Scholar 

  • Pette D, Vrbova G (1985) Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8:676–689

    Article  PubMed  CAS  Google Scholar 

  • Platzer AC (1978) The ultrastructure of normal myogenesis in the limb of the mouse. Anat Rec 190:639–658

    Article  PubMed  CAS  Google Scholar 

  • Pogogeff IA, Murray MR (1946) Form and behavior of adult mammalian skeletal muscle in vitro. Anat Rec 95:321–329

    Article  Google Scholar 

  • Pugh RCB, Cameron KM (1976) Teratoma. In: Pugh RCB (ed) Pathology of the testis. Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne, pp 199–244

    Google Scholar 

  • Redenbach DM, Ovalle WK, Bressler BH (1988) Effect of neonatal denervation on the distribution of fiber types in a mouse fasttwitch skeletal muscle. Histochemistry 89:333–342

    Article  PubMed  CAS  Google Scholar 

  • Rivers EN, Hamilton DW (1986) Morphologic analysis of spontaneous teratocarcinogenesis in developing testes of strain 129/Sv-ter mice. Am J Pathol 124:263–280

    PubMed  CAS  Google Scholar 

  • Robertson EJ (ed) (1987) Teratocarcinomas and embryonic stem cells. A practical approach. IRL Press, Oxford, Washington DC

    Google Scholar 

  • Shimada Y, Fischman DA, Moscona AA (1969) Formation of neuromuscular junctions in embryonic cell cultures. Proc Natl Acad Sci 62:715–721

    Article  PubMed  CAS  Google Scholar 

  • Stevens LC (1959) Embryology of testicular teratomas in strain 129 mice. J Natl Cancer Inst 23:1249–1295

    PubMed  CAS  Google Scholar 

  • Stevens LC (1973) A new inbred subline of mice (129/ter-Sv) with high incidence of spontaneous congenital testicular teratomas. J Natl Cancer Inst 50:235–242

    PubMed  CAS  Google Scholar 

  • Thompson WJ, Sutton LA, Riley DA (1984) Fibre type composition of single motor units during synapse elimination in neonatal rat soleus muscle. Nature 309:709–711

    Article  PubMed  CAS  Google Scholar 

  • Walt H, Arrenbrecht S, DeLozier-Blanchet CD, Keller PJ, Nauer R, Hedinger CE (1986) A human testicular germ cell tumor with borderline histology between seminoma and embryonal carcinoma secreted beta-human chorionic gonadotropin and alpha-fetoprotein only as a xenograft. Cancer 58:139–146

    Article  PubMed  CAS  Google Scholar 

  • Walt H, Emmerich P, Cremer T, Hofmann MC, Bannwart F (1989) Supernumerary chromosome 1 in interphase nuclei of atypical germ cells in paraffin embedded human seminiferous tubules. Lab Invest 61:527–531

    PubMed  CAS  Google Scholar 

  • Wirtz P, Loermans HMTh, Peer PGM, Reintjes AGM (1983) Postnatal growth and differentiation of muscle fibres in the mouse. I. A histochemical and morphometrical investigation of normal muscle. J Anat 137:109–126

    PubMed  Google Scholar 

  • Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. W. Zenker on occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müntener, M., Kägi, U., Stevens, L.C. et al. Innervation and maturation of muscular tissue in testicular teratomas in strain 129/Sv-ter mice. Virchows Archiv B Cell Pathol 59, 223–229 (1990). https://doi.org/10.1007/BF02899408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899408

Key words

Navigation