Skip to main content
Log in

INK4 Family —A promising target for ‘gene-regulating chemoprevention’ and ‘molecular-targeting prevention’ of cancer

  • Minireview Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Inactivation of the p16INK4a gene is one of the most frequent defects that contribute to oncogenesis in human cancer, since it is a tumor-suppressor gene. Therefore, functional restoration of p16INK4a is one of the most effective methods for cancer prevention. We proposed the concept of ‘gene-regulating chemoprevention’ and ‘molecular-targeting prevention’ of cancer, which assumes that transcriptional regulation by drugs on tumor-suppressor genes or functionally similar genes to the tumor-suppressor genes contributes to the prevention of human malignancies. The p16INK4a homologs p15INK4b, p18INK4c and p19INK4d have been recently identified, and these four members constitute the INK4 family of proteins. All directly bind to cyclin D-cyclin dependent kinase (CDK) 4/6 and are therefore specific inhibitors of these complexes. We recently showed that histone deacetylase (HDAC) inhibitors, promising chemopreventive and chemotherapeutical agents, induce p15INK4b and p19INK4d gene expression and cause growth arrest, suggesting that both genes are important molecular targets for HDAC inhibitors. Furthermore, we found that 12-O-tetradecanoylphorbol-13-acetate (TPA), which is widely used as a tumor promoter and protein kinase C activator, promotes human cancer cell growth through the down-regulation of p18INK4c gene expression. This suggests that a mouse two-stage carcinogenesis model using TPA might partially represent the most common human carcinogenesis pathway related to RB. Our results suggest that the INK4 family consists of attractive and promising molecular targets for the ‘gene-regulating chemoprevention’ and ‘molecular-targeting prevention’ of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pitot HC. The molecular biology of carcinogenesis. Cancer. 1993; 72: 962–970.

    Article  PubMed  CAS  Google Scholar 

  2. Sporn MB, Suh N. Chemoprevemtion: an essential approach to controlling cancer. Nature Rev Cancer. 2002; 2: 537–543.

    Article  CAS  Google Scholar 

  3. Roussel MF. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999; 18: 5311–5317.

    Article  PubMed  CAS  Google Scholar 

  4. Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta. 1998; 1378: F115-F177.

    PubMed  CAS  Google Scholar 

  5. Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature. 2001; 413: 83–86.

    Article  PubMed  CAS  Google Scholar 

  6. Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature. 2001; 413: 86–91.

    Article  PubMed  CAS  Google Scholar 

  7. Smith-Sorenson B, Hovig E. CDKN2A (p16INK4A) somatic and germline mutations. Hum Mutat. 1996; 7: 294–303.

    Article  Google Scholar 

  8. Tanaka T, Iwasa Y, Kondo S, Hiai H, Toyokuni S. High incidence of allelic loss on chromosome 5 and inactivation ofp15 INK4B andp16 INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Oncogene. 1999; 18: 3793–3797.

    Article  PubMed  CAS  Google Scholar 

  9. Kim DH, Nelson HH, Wiencke JK, Zheng S, Christiani DC, Wain JC, Mark EJ, Kelsey KT. p16INK4a and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res. 2001; 61: 3419–3424.

    PubMed  CAS  Google Scholar 

  10. Sakai T. Molecular cancer epidemiology—the present status and future possibilities. Jpn J Hyg. 1996; 50: 1036–1046.

    CAS  Google Scholar 

  11. Sowa Y, Sakai T. Gene-regulating chemoprevention against cancer—As a model for “Molecular-targeting prevention” of cancer. Jpn J Hyg. 2003; 58: 267–274.

    CAS  Google Scholar 

  12. Kornfehl J, Hager G, Gedlicka C, Formanek M. Ethanol decreases negative cell-cycle-regulating proteins in a head and neck squamous cell carcinoma cell line. Acta Otolaryngol. 2002; 122: 338–342.

    Article  PubMed  CAS  Google Scholar 

  13. Chang HW, Ling GS, Wei WI, Yuen AP. Smoking and drinking can induce p15 methylation in the upper aerodigestive tract of healthy individuals and patients with head and neck squamous cell carcinoma. Cancer. 2004; 101: 125–132.

    Article  PubMed  Google Scholar 

  14. Zindy F, Quelle DE, Roussel MF, Sherr CJ. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene. 1997; 15: 203–211.

    Article  PubMed  CAS  Google Scholar 

  15. Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature. 1994; 371: 257–261.

    Article  PubMed  CAS  Google Scholar 

  16. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenicras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997; 88: 593–602.

    Article  PubMed  CAS  Google Scholar 

  17. Hitomi T, Matsuzaki Y, Yokota T, Takaoka Y, Sakai T. p15INK4b in HDAC inhibitor-induced growth arrest. FEBS Lett. 2003; 554: 347–350.

    Article  PubMed  CAS  Google Scholar 

  18. Yokota T, Matsuzaki Y, Miyazawa K, Zindy F, Roussel MF, Sakai T. Histone deacetylase inhibitors activateINK4d gene through Spl site in its promoter. Oncogene. 2004; 23: 5340–5349.

    Article  PubMed  CAS  Google Scholar 

  19. Matsuzaki Y, Takaoka Y, Hitomi T, Nishino H, Sakai T. Activation of protein kinase C promotes human cancer cell growth through downregulation of p18INK4c. Oncogene. 2004; 23: 5409–5414.

    Article  PubMed  CAS  Google Scholar 

  20. Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays. 1995; 17: 423–430.

    Article  PubMed  CAS  Google Scholar 

  21. He LZ, Tolentino T, Grayson P, Zhong S, Warrell RP Jr, Rifkind RA, Marks PA, Richon VM, Pandolfi PP. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyclocytic leukemia. J Clin Invest. 2001; 108: 1321–1330.

    PubMed  CAS  Google Scholar 

  22. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000; 92: 1210–1216.

    Article  PubMed  CAS  Google Scholar 

  23. Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmoush L, Kingma DM, Turner ML, Altemus R, Bates SE. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood. 2001; 98: 2865–2868.

    Article  PubMed  CAS  Google Scholar 

  24. Scheppach W, Bartram HP, Richter F. Role of short-chain fatty acids in the prevention of colorectal cancer. Eur J Cancer. 1995; 31A: 1077–1080.

    Article  PubMed  CAS  Google Scholar 

  25. Nakano K, Mizuno T, Sowa Y, Orita T, Yoshino T, Okuyama Y, Fujita T, Ohtani-Fujita N, Matsukawa Y, Tokino T, Yamagishi H, Oka T, Nomura H, Sakai T. Butyrate activates the WAF1/Cip1 gene promoter through Sp1 sites in a p53-negative human colon cancer cell line. J Biol Chem. 1997; 272: 22199–22206.

    Article  PubMed  CAS  Google Scholar 

  26. Sowa Y, Orita T, Minamikawa S, Nakano K, Mizuno T, Nomura H, Sakai T. Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem Biophys Res Commun. 1997; 241: 142–150.

    Article  PubMed  CAS  Google Scholar 

  27. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999; 13: 1501–1512.

    Article  PubMed  CAS  Google Scholar 

  28. Vaziri C, Stice L, Faller DV. Butyrate-induced G1 arrest results from p21-independent disruption of retinoblastoma protein-mediated signals. Cell Growth Differ. 1998; 9: 465–474.

    PubMed  CAS  Google Scholar 

  29. Kim YB, Ki SW, Yoshida M, Horinouchi S. Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. J Antibiot (Tokyo). 2000; 53: 1191–1200.

    CAS  Google Scholar 

  30. Suske G. The Sp-family transcription factors. Gene. 1999; 238: 291–300.

    Article  PubMed  CAS  Google Scholar 

  31. Won J, Yim J, Kim TK. Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. J Biol Chem. 2002; 277: 38230–38238.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Y, Dufau ML. Silencing of transcription of the human luteinizing hormone receptor gene by histone deacetylase-mSin3A complex. J Biol Chem. 2002; 277: 33431–33438.

    Article  PubMed  CAS  Google Scholar 

  33. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y. CDK inhibitors p18INK4c and p27Kipl mediate two separate pathways to collaborately suppress pituitary tumorigenesis. Genes Dev. 1998; 12: 2899–2911.

    Article  PubMed  CAS  Google Scholar 

  34. Latres E, Malumbres M, Sotillo R, Martin J, Ortega S, Martin-Caballero J, Flores JM, Cordon-Cardo C, Barbacid M. Limited overlapping roles of p15INK4b and p18INK4c cell cycle inhibitors in proliferation and tumorigenesis. EMBO J. 2000; 19: 3496–3506.

    Article  PubMed  CAS  Google Scholar 

  35. Bai F, Pei X-H, Godfrey VL, Xiong Y. Haploinsufficiency of p18INK4c sensitizes mice to carcinogen-induced tumorigenesis. Mol Cell Biol. 2003; 23: 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  36. Nishizuka Y. Role of protein kinase C in cell surface signal transduction and tumor promotion. Nature. 1984; 308: 693–698.

    Article  PubMed  CAS  Google Scholar 

  37. Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 2000; 60: 3689–3695.

    PubMed  CAS  Google Scholar 

  38. Schenk PW, Snaar-Jagalska BE. Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta. 1999; 1449: 1–24.

    Article  PubMed  CAS  Google Scholar 

  39. Liebmann C. Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity. Cell Signal. 2001; 13: 777–785.

    Article  PubMed  CAS  Google Scholar 

  40. O’Brian CA, Vogel VG, Singletary SE, Ward NE. Elevated protein kinase C expression in human breast tumor biopsies relative to normal breast tissue. Cancer Res. 1989; 49: 3215–3217.

    PubMed  CAS  Google Scholar 

  41. Alvaro V, Touraine P, Raisman VR, Bai-Grenier F, Birman P, Joubert D. Protein kinase C activity and expression in normal and adenomatous human pituitaries. Int J Cancer. 1992; 50: 724–730.

    Article  PubMed  CAS  Google Scholar 

  42. Gordge PC, Hulme MJ, Clegg RA, Miller WR. Elevation of protein kinase A and protein kinase C activities in malignant as compared with normal human breast tissue. Eur J Cancer. 1996; 32A: 2120–2126.

    Article  PubMed  CAS  Google Scholar 

  43. Willett WC. Epidemiologic studies of diet and cancer. Med Oncol & Tumor Pharmacother. 1990; 7: 93–97.

    CAS  Google Scholar 

  44. Birt DF, Bresnick E. Human Nutrition: A Comprehensive Treatise. New York, NY: Plenum; 1991. p. 221–261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Sakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuzaki, Y., Sakai, T. INK4 Family —A promising target for ‘gene-regulating chemoprevention’ and ‘molecular-targeting prevention’ of cancer. Environ Health Prev Med 10, 72–77 (2005). https://doi.org/10.1007/BF02897996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897996

Key words

Navigation