Skip to main content
Log in

Possible mechanisms for induction of oxidative stress and suppression of systemic nitric oxide production caused by exposure to environmental chemicals

  • Review Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

The cytotoxic effects evoked by exposure to environmental chemicals having electrophilic properties are often attributable to covalent attachment to intracellular macromolecules through sulfhydryl groups or enzyme-mediated redox cycling, leading to the generation of reactive oxygen species (ROS). When huge amounts of ROS form they overwhelm antioxidant defenses resulting in the induction of oxidative stress. Nitric oxide (NO) which plays a crucial role in vascular tone, is formed by endothelial NO synthase (eNOS). Since a decrease in systemic NO production is implicated in the pathophysiological actions of vascular diseases, dysfunction of eNOS by environmental chemicals is associated with cardiopulmonary-related diseases and mortality. In this review, we introduce the mechanism-based toxicities (covalent attachment and redox cycling) of electrophiles. Therefore, this review will focus on the possible mechanisms for the induction of oxidative stress and impairment of NO production caused by environmental chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

reactive oxygen species:

ROS

NO:

nitric oxide

NOS:

nitric oxide synthase

nNOS:

neuronal NO synthase

M6DH:

morphine 6-dehydrogenase

MDMA:

3,4-methylenedioxymethamphetamine

CYP:

cytochrome P450

DHMA:

3,4-dihydroxymethamphetamine

P450R:

cytochrome P450 reductase

TNT:

2,4,6-trinitrotoluene

DEP:

diesel exhaust particles

8-OHdG:

8-hydroxydeoxyguanosine

E 17 :

one-electron reduction potential

CAM:

calmodulin

BAEC:

bovine aortic endothelial cells

NOx:

nitrite and nitrate

DTT:

dithiothreitol

LPO:

lipid peroxidation

iAsV:

inorganic pentavalent arsenic

BH4 :

(6R)-5,6,7,8-tetrahydrobiopterin

References

  1. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. Role of quinones in toxicology. Chem. Res. Toxicol. 2000; 13: 135–160.

    Article  PubMed  CAS  Google Scholar 

  2. Finkel T. Redox-dependent signal transduction. FEBS Lett. 2000; 476: 52–54.

    Article  PubMed  CAS  Google Scholar 

  3. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 1992; 112: 2–16.

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien PJ. Molecular mechanism of quinone cytotoxicity. Chem.-Biol. Interact. 1991; 80: 1–41.

    Article  PubMed  CAS  Google Scholar 

  5. Misra AL, Woods LA. Evidence for interaction in vitro of morphine with glutathione. Nature 1970; 228: 1226–1227.

    Article  PubMed  CAS  Google Scholar 

  6. Nagamatsu K, Kido Y, Terao T, Ishida T, Toki S. Effect of morphinone on opiate receptor binding and morphine-elicited analgesia. Life Sci. 1982; 31: 1451–1457.

    Article  PubMed  CAS  Google Scholar 

  7. Nagamatsu K, Kido Y, Terao T, Ishida T, Toki S. Protective effect of sulfhydryl compounds on acute toxicity of morphinone. Life Sci. 1982; 30: 1121–1127.

    Article  PubMed  CAS  Google Scholar 

  8. Yamano S, Kageura E, Ishida T, Toki S. Purification and characterization of guinea pig liver morphine 6-dehydrogenase. J. Biol. Chem. 1985; 260: 5259–5264.

    PubMed  CAS  Google Scholar 

  9. Kumagai Y, Ishida T, Toki S. Method for determination of morphinone in urine and bile of guinea pig by high-performance liquid chromatography. J. Chromatogr. 1987; 421: 155–160.

    Article  PubMed  CAS  Google Scholar 

  10. Ishida T, Kumagai Y, Ikeda Y, Ito K, Yano M, Toki S, Mihashi F, Fujioka T, Iwase Y, Hachiyama S. (8S)-(glutathion-S-yl)dihydromorphinone, a novel metabolite of morphine from guinea pig bile. Drug. Metab. Dispos. 1989; 17: 77–81.

    PubMed  CAS  Google Scholar 

  11. Ishida T, Kumagai Y, Ikeda Y, Ito K, Yano M, Hachiyama S, Toki S. Typical molecular ion peak analysis of morphinone- and codeinone-glutathione adducts with sodium iodide using fast atom bombardment spectrometry. Organic. Mass. Spectrometry 1989; 24: 286–288.

    Article  CAS  Google Scholar 

  12. Kumagai Y, Todaka T, Toki S. A new metabolic pathway of morphine: in vivo and in vitro formation of morphinone and morphine-glutathione adduct in guinea pig. J. Pharmacol. Exp. Ther. 1990; 255: 504–510.

    PubMed  CAS  Google Scholar 

  13. Kumagai Y, Todaka T, Yamano S, Toki S. Stimulation mechanism of guinea pig liver-mediated reduction of naloxone by morphine. Drug. Metab. Dispos. 1990; 18: 462–466.

    PubMed  CAS  Google Scholar 

  14. Barnes DM. New data intensify the agony over ecstasy. Science 1988; 239: 864–866.

    Article  PubMed  CAS  Google Scholar 

  15. Ricaurte G, Bryan G, Strauss L, Seiden L, Schuster C. Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals. Science 1985; 229: 986–988.

    Article  PubMed  CAS  Google Scholar 

  16. Schmidt CJ, Taylor VL. Direct central effects of acute methylenedioxymethamphetamine on serotonergic neurons. Eur. J. Pharmacol. 1988; 156: 121–131.

    Article  PubMed  CAS  Google Scholar 

  17. Hiramatsu M, Kumagai Y, Unger SE, Cho AK. Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. J. Pharmacol. Exp. Ther. 1990; 254: 521–527.

    PubMed  CAS  Google Scholar 

  18. Kumagai Y, Wickham KA, Schmitz DA, Cho AK. Metabolism of methylenedioxyphenyl compounds by rabbit liver preparations. Participation of different cytochrome P450 isozymes in the demethylenation reaction. Biochem. Pharmacol. 1991; 42: 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  19. Lin LY, Kumagai Y, Cho AK. Enzymatic and chemical demethylenation of (methylenedioxy)amphetamine and (methylenedioxy)methamphetamine by rat brain microsomes. Chem. Res. Toxicol. 1992; 5: 401–406.

    Article  PubMed  CAS  Google Scholar 

  20. Kumagai Y, Lin LY, Hiratsuka A, Narimatsu S, Suzuki T, Yamada H, Oguri K, Yoshimura H, Cho AK. Participation of cytochrome P450-2B and-2D isozymes in the demethylenation of methylenedioxymethamphetamine enantiomers by rats. Mol. Pharmacol. 1994; 45: 359–365.

    PubMed  CAS  Google Scholar 

  21. Patel N, Kumagai Y, Unger SE, Fukuto JM, Cho AK. Transformation of dopamine and alpha-methyldopamine by NG108-15 cells: formation of thiol adducts. Chem. Res. Toxicol. 1991; 4: 421–426.

    Article  PubMed  CAS  Google Scholar 

  22. Segura M, Ortuno J, Farre M, McLure JA, Pujadas M, Pizarro N, Llebaria A, Joglar J, Roser PN, Segura J, de La Torre R. 3,4-Dihydroxymethamphetamine (HHMA). A major in vivo 3,4-methylenedioxymethamphetamine (MDMA) metabolite in humans. Chem. Res. Toxicol. 2001; 14: 1203–1208.

    Article  PubMed  CAS  Google Scholar 

  23. Moore HW, Czerniak R. Naturally occurring quinones as potential bioreductive alkylating agents. Med. Res. Rev. 1981; 1: 249–280.

    Article  PubMed  CAS  Google Scholar 

  24. Bachur NR, Gordon SL, Gee MV. A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res. 1978; 38: 1745–1750.

    PubMed  CAS  Google Scholar 

  25. Kumagai Y, Tsurutani Y, Shinyashiki M, Homma-Takeda S, Yoshikawa T, Nakai Y, Shimojo N. Bioactivation of lapachol responsible for DNA scission by NADPH-cytochrome P450 reductase. Environ. Toxicol. Pharmacol. 1997; 3: 245–250.

    Article  CAS  Google Scholar 

  26. Hathaway JA. Trimitrotoluene: a review of reported dose-related effects providing documentation for a workplace standard. J. Occup. Med. 1977; 19: 341–345.

    PubMed  CAS  Google Scholar 

  27. Harkonen H, Karki M, Lahti A, Savolainen H. Early equatorial cataracts in workers exposed to trinitrotoluene. Am. J. Ophthalmol. 1983; 95: 807–810.

    Article  PubMed  CAS  Google Scholar 

  28. Srivastava SK, Ansari NH, Bhatnagar A. Sugar induced cataractogenesis: a paradigm of oxidative tissue pathology? Lens Eye Toxic. Res. 1990; 7: 161–171.

    PubMed  CAS  Google Scholar 

  29. Spector A. Oxidative stress-induced cataract: mechansm of action. FASEB J. 1995; 9: 1173–1182.

    PubMed  CAS  Google Scholar 

  30. Zitting A, Szumanska G, Nickels J, Savolainen H. Acute toxic effects of trinitrotoluene on rat brain, liver and kidny: role of radical production. Arch. Toxicol. 1982; 51: 53–64.

    Article  CAS  Google Scholar 

  31. Kumagai Y, Wakayama T, Li S, Shinohara A, Iwamatsu A, Sun GF, Shimojo N. ξ-crystallin catalyzes the reductive activation of 2,4,6-trinitrotoluene to generate reactive oxygen species: a proposed mechanism for the induction of cataracts. FEBS Lett. 2000; 478: 295–298.

    Article  PubMed  CAS  Google Scholar 

  32. Schuetzle D, Lee FSC, Prater TJ. The identification of polynuclear aromatic hydrocarbon derivatives in mutagenic fractions of diesel exhaust particulate extracts. Int. J. Environ. Anal. Chem. 1981; 9: 1–93.

    Google Scholar 

  33. Schuetzle D. Sampling of vehicle emissions for chemical analysis and biological testing. Environ. Health Perspect. 1983; 47: 65–80.

    Article  PubMed  CAS  Google Scholar 

  34. McClellan RO. Health effects of exposure to diesel exhaust particles. Ann. Rev. Pharmacol. Toxicol. 1987; 27: 279–300.

    Article  CAS  Google Scholar 

  35. Nel AE, Diaz-Sanchez D, Li N. The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr. Opin. Pulm. Med. 2001; 7: 20–26.

    Article  PubMed  CAS  Google Scholar 

  36. Sagai M, Saito H, Ichinose T, Kodama M, Mori Y. Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity. Free Rad. Biol. Med. 1993; 14: 37–47.

    Article  PubMed  CAS  Google Scholar 

  37. Hiura TS, Kaszubowski MP, Li N, Nel,AE. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages. J. Immunol. 1999; 163: 5582–5591.

    PubMed  CAS  Google Scholar 

  38. Li N, Venkatesan MI, Miguel A, Kaplan R, Gujuluva C, Alam J, Nel AE. Induction of heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals and quinones via the antioxidant-responsive element. J. Immunol. 2000; 165: 3393–3401.

    PubMed  CAS  Google Scholar 

  39. Takizawa H, Ohtoshi T, Kawasaki S, Abe S, Sugawara I, Nakahara K, Matsushima K, Kudoh S. Diesel exhaust particles activate human bronchial epithelial cells to express inflammatory mediators in the airways: a review. Respirology 2000; 5: 197–203.

    Article  PubMed  CAS  Google Scholar 

  40. Gavett SH, Koren HS. The role of particulate matter in exacerbation of atopic asthma. Int. Arch. Allergy Immunol. 2001; 124: 109–112.

    Article  PubMed  CAS  Google Scholar 

  41. Nagashima M, Kasai H, Yokota J, Nagamachi Y, Ichinose T, Sagai M. Formation of an oxidative DNA damage, 8-hydroxydeoxyguanosine, in mouse lung DNA after intratracheal instillation of diesel exhaust particles and effects of high dietary fat and beta-carotene on this process. Carcinogenesis 1995; 16: 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  42. Kasai H, Nishimura S (1984) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucl. Acid. Res. 1984; 12: 2137–2145.

    Article  CAS  Google Scholar 

  43. Casillas AM, Hiura T, Li N, Nel AE. Enhancement of allergic inflammation by diesel exhaust particles: permissive role of reactive oxygen species. Ann. Allergy Asthma, Immunol. 1999; 83: 624–629.

    Article  CAS  Google Scholar 

  44. Kumagai Y, Arimoto T, Shinyashiki M, Shimojo N, Nakai Y, Yoshikawa T, Sagai M. Generation of reactive oxygen species during interaction of diesel exhaust particles components with NADPH-cytochrome P450 reductase and involvement of the bioactivation in the DNA damage. Free Rad. Biol. Med. 1997; 22: 479–487.

    Article  PubMed  CAS  Google Scholar 

  45. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991; 43: 109–142.

    PubMed  CAS  Google Scholar 

  46. Stuehr DJ. Structure-function aspects in the nitric oxide synthases. Annu. Rev. Pharmacol. Toxicol. 1997; 37: 339–359.

    Article  PubMed  CAS  Google Scholar 

  47. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991; 351: 714–718.

    Article  PubMed  CAS  Google Scholar 

  48. Luo D, Vincent SR. Inhibition of nitric oxide synthase by antineoplastic anthracyclines. Biochem. Pharmacol. 1994; 47: 211–2112.

    Article  Google Scholar 

  49. Kumagai Y, Nakajima H, Midorikawa K, Homma-Takeda S, Shimojo N. Inhibition of nitric oxide formation by neuronal nitric oxide synthase by quinones: Nitric oxide synthase as a quinone reductase. Chem. Res. Toxicol. 1998; 11: 608–613.

    Article  PubMed  CAS  Google Scholar 

  50. Abu-Soud HM, Stuehr DJ. Nitric oxide synthases reveal a role for aalmodulin in controlling electron transfer. Proc. Natl. Acad. Sci. USA 1993; 90: 10769–10772.

    Article  PubMed  CAS  Google Scholar 

  51. Abu-Soud HM, Yoho LL, Stuehr DJ. Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. Activation of intra- and interdomain electron transfer. J. Biol. Chem. 1994; 269: 32047–32050.

    PubMed  CAS  Google Scholar 

  52. Klatt P, Heinzel B, John M, Kastner M, Bohme E, Mayer B. Ca2+/calmodulin-dependent cytochrome c reductase activity of brain nitric oxide synthase. J. Biol. Chem. 1992; 267: 11374–11378.

    PubMed  CAS  Google Scholar 

  53. Vásquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard KA Jr, Kalyanaraman B. Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 1997; 36: 11293–11297.

    Article  PubMed  Google Scholar 

  54. Schmidt HH, Smith RM, Nakane M, Murad F. Ca2+/calmodulin-dependent NO synthase type 1: a biopteroflavoprotein with Ca2+/calmodulin-independent diaphorase and reductase activities. Biochemistry 1992; 31: 3243–3249.

    Article  PubMed  CAS  Google Scholar 

  55. Matsuda H, Kimura S, and Iyanagi T. One-electron reduction of quinones by the neuronal nitric-oxide synthase reductase domain. Biochim. Biophys. Acta. 2000; 1459: 106–116.

    Article  PubMed  CAS  Google Scholar 

  56. Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993; 329, 1753–1759.

    Article  PubMed  CAS  Google Scholar 

  57. Pope CA III, Thun MJ, Namboodiri M, Dockery DW, Evans JS, Speizer FE, Health CW Jr. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med. 1995; 151: 669–674.

    PubMed  Google Scholar 

  58. Borja-Aburto VH, Castillejos M, Gold DR, Bierzwinski S, Loomis D. Mortality and ambient fine particles in southwest Mexico City, 1993–1995. Environ. Health Perspect. 1998; 106: 849–855.

    Article  PubMed  CAS  Google Scholar 

  59. Ikeda M, Suzuki M, Watarai K, Sagai M, Tomita T. Impairment of endothelium-dependent relaxation by diesel exhaust particles in rat thoracic aorta. Jpn. J. Pharmacol. 1995; 68: 183–189.

    Article  PubMed  CAS  Google Scholar 

  60. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992; 6: 3051–3064.

    PubMed  CAS  Google Scholar 

  61. Rees DD, Palmer RMJ, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc. Natl. Acad. Sci. USA 1989; 86: 3375–3378.

    Article  PubMed  CAS  Google Scholar 

  62. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377: 239–242.

    Article  PubMed  CAS  Google Scholar 

  63. Umans JG, Levi R. Nitric oxide in the regulation of blood flow and arterial pressure. Annu. Rev. Physiol. 1995; 57: 771–790.

    Article  PubMed  CAS  Google Scholar 

  64. Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function. Circ. Res. 1996; 79: 363–380.

    PubMed  CAS  Google Scholar 

  65. Kumagai Y, Hayashi T, Miyauchi T, Endo A, Iguchi A, Kiriya-Sakai M, Sakai S, Yuki K, Kikushima M, Shimojo N. Phnanthraquione inhibits eNOS activity and suppresses vasorelaxation. Am. J. Physiol. 2001; 281: R25-R30.

    CAS  Google Scholar 

  66. Grange DL, Anstey NM, Miller WC, Weinberg JB. Measuring nitric oxide production in human clinical studies. Method Enzymol. 1997; 301: 49–61.

    Article  Google Scholar 

  67. Kumagai Y, Koide S, Taguchi K, Endo A, Nakai Y, Yoshikawa T, Shimojo N. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem. Res. Toxicol. 2002; 15: 483–489.

    Article  PubMed  CAS  Google Scholar 

  68. Wardman P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 1989; 18: 1637–1755.

    Article  CAS  Google Scholar 

  69. Murphy ME, Piper HM, Watanabe H, Sies H. Nitric oxide production by cultured aortic endothelial cells in response to thiol depletion and replenishment. J. Biol. Chem. 1991; 266: 19378–19383.

    PubMed  CAS  Google Scholar 

  70. Zembowicz A, Hatchett RJ, Radziszewsi W, Gryglewsi RJ. Inhibition of endothelial nitric oxide synthase by ebselen. Prevention by thiol suggests the inactivation by ebselen of a critical thiol essential for the catalytic activity of nitric oxide synthase. J. Pharmacol. Exp. Ther. 1993; 267: 1112–1117.

    PubMed  CAS  Google Scholar 

  71. Marczin N, Ryan US, Catravas JD. Sulthydryl-depleting agents, but not deferoxamine, modulated EDRF action in cultured pulmonary arterial cells. Am. J. Physiol. 1993; 265: L220-L227.

    PubMed  CAS  Google Scholar 

  72. Patel JM, Block ER. Sulfhydryl-disulfide modification and the role of disulfide oxidoreductases in regulation of the catalytic activity of nitric oxide synthase in pulmonary artery endothelial cells. Am. J. Respir. Cell Mol. Biol. 1995; 13: 352–359.

    PubMed  CAS  Google Scholar 

  73. Taguchi K, Kumagai Y, Endo A, Kikushima M, Ishii Y, Shimojo N. Phenanthraquione affects endothelial nitric oxide synthase activity through modification of the thiol groups: an alternative inhibition mechanism. J. Health Sci. 2001; 47: 571–574.

    Article  CAS  Google Scholar 

  74. Davidge ST, Ojimba J, McLaughlin MK. Vascular function in the vitamin E-deprived rat: an interaction between nitric oxide and superoxide anions. Hypertension 1998; 31: 830–835.

    PubMed  CAS  Google Scholar 

  75. World Health Organization. Environmental Health Criteria. 18: Arsenic. Geneva, Switzerland: World Health Organization. 43–102; 1981.

    Google Scholar 

  76. Chen GS, Asai T, Suzuki Y, Nishioka K, Nishiyama S. A possible pathogenesis for Blackfoot disease: Effects of trivalent arsenic (As2O3) on cultured human umbilical vein endothelial cells. J. Dermatol. 1990; 17: 599–608.

    PubMed  CAS  Google Scholar 

  77. Wang TS, Kuo CF, Jan KY, Huang H. Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J. Cell Physiol. 1996; 169: 256–268.

    Article  PubMed  CAS  Google Scholar 

  78. Ramos O, Carrizales L, Yanez L, Mejia J, Batres L, Ortiz D, Diaz-Barriga F. Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ. Health Perspect. 1995; 103: 85–88.

    Article  PubMed  CAS  Google Scholar 

  79. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999; 94: 2102–2111.

    PubMed  CAS  Google Scholar 

  80. Liu SX, Athar M, Lippai I, Waldren C, Hei TK. Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc. Natl. Acad. Sci. USA 2001; 98: 1643–1648.

    Article  PubMed  CAS  Google Scholar 

  81. Delnomdedieu M, Basti MM, Styblo M, Otvos JD, Thomas DJ. Complexation of arsenic species in rabbit erythrocytes. Chem. Res. Toxicol. 1994; 7: 621–627.

    Article  PubMed  CAS  Google Scholar 

  82. Winski SL, Carter DE. Interactions of rat red blood cell sulfhydryls with arsenate and arsenite. J. Toxicol. Environ. Health 1995; 46: 379–397.

    Article  PubMed  CAS  Google Scholar 

  83. Uckun FM, Liu XP, D’Cruz OJ. Human sperm immobilizing activity of aminophenyl arsenic acid and its N-substituted quinazoline, pyrimidine, and purine derivatives: protective effect of glutathione. Reprod. Toxicol. 2002; 16: 57–64.

    Article  PubMed  CAS  Google Scholar 

  84. Böger RH, Bode-Böger SM, Thiele W, Junker W, Alexander K, Frölich JC. Biochemical evidence for impared nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation. 1997; 95: 2068–2074.

    PubMed  Google Scholar 

  85. Pi J, Kumagai Y, Sun G, Yamauchi H, Yoshida T, Iso H, Endo A, Yu L, Yuki K, Miyauchi T, Shimojo N. Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in inner Mongolia. Free Rad. Biol. Med. 2000; 28: 1137–4112.

    Article  PubMed  CAS  Google Scholar 

  86. Pi JB, Yamauchi H, Kumagai H, Sun GF, Yoshida T, Aikawa H, Hopenhayn-Rich C, Shimojo N. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ. Health Perspect. 2002; 110: 331–336.

    PubMed  CAS  Google Scholar 

  87. Heinzel B, John M, Klatt P, Bohme E, Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem. J. 1992; 281: 627–630.

    PubMed  CAS  Google Scholar 

  88. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J. Biol. Chem. 1992; 267: 24173–24176.

    PubMed  CAS  Google Scholar 

  89. Pi JB, Kumagai Y, Nikaido, M, Yamauchi H, Horiguchi S, Ishii Y, Sun GF, Shimojo N. A mechanism for the impairment of nitric oxide formation and induction of oxidative stress caused by prolonged arsenic exposure. 10th International Symposium on Natural and Industrial Arsenic Japan; 2001, 31–32 (abstract).

  90. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP. Biomarkers of free radical damage applications in experimental animals and in humans. Free Rad. Biol. Med. 1999; 26: 202–226.

    Article  PubMed  Google Scholar 

  91. Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000; 486: 10–13.

    Article  PubMed  CAS  Google Scholar 

  92. Katusic ZS, Vanhoutte PM. Superoxide anion is an endothelium-derived contracting factor. Am. J. Physiol. 1989; 257: H33–37.

    PubMed  CAS  Google Scholar 

  93. Lawson DL, Mehta JL, Nichols WW, Mehta P, Donnelly WH. Superoxide radical-mediated endothelial injury and vasoconstriction of rat thoracic aortic rings. J. Lab. Clin. Med. 1990; 115: 541–548.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Kumagai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumagai, Y., Shimojo, N. Possible mechanisms for induction of oxidative stress and suppression of systemic nitric oxide production caused by exposure to environmental chemicals. Environ Health Prev Med 7, 141–150 (2002). https://doi.org/10.1007/BF02897942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897942

Key words

Navigation