Skip to main content
Log in

Slow penetration of anthracyclines into spheroids and tumors: a therapeutic advantage?

  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Summary

Despite clear evidence that the effective penetration of the anthracycline antibiotics into experimental tumors or multicell spheroids is poor, these drugs exhibit clinical activity against a variety of solid tumors. In an attempt to understand this apparent contradiction, we used the Chinese hamster V79 spheroid system and flow cytometry techniques for intra-spheroid pharmacological studies of doxorubicin and daunomycin. Our results indicate that the slow delivery of the anthracyclines to the inner cells of spheroids is due to the rapid binding of the drug by cells in the outer layers. After exposure, the anthracyclines are retained much more effectively when cells remain in intact spheroids than when the spheroids have been dispersed, resulting in considerably more cytotoxicity in situ. This result indicates a need for considerable caution in attempting to predict the anti-tumor efficacy of drugs by using either conventional cell-culture systems, spheroids that have been disaggregated immediately post-exposure, or excision assays of tumors from experimental animals. Furthermore, our results suggest the need for a critical evaluation of the significance of the multidrug resistance (MDR) phenotype for cells surrounded by other drug-containing cells as opposed to single cells in drug-free culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradley G, Juranka PF, Ling V (1988) Mechanism of multidrug resistance. Biochim Biophys Acta 948: 87

    PubMed  CAS  Google Scholar 

  2. Cassady JR, Richter MP, Piro AJ, Jaffe N (1975) Radiation-Adriamycin interactions: preliminary clinical observations. Cancer 36: 946

    Article  PubMed  CAS  Google Scholar 

  3. Deffie AM, Alam T, Seneviratne C, Beenken SW, Batra JK, Shea TC, Henner WD, Goldenberg GJ (1988) Multifactorial resistance to Adriamycin: relationship of DNA repair, glutathione transferase activity, drug efflux and P-glycoprotein in cloned cell lines of Adriamycin-sensitive and -resistant P388 leukemia. Cancer Res 48: 3595

    PubMed  CAS  Google Scholar 

  4. Donaldson SS, Glick JM, Wilbur JR (1974) Adriamycin activating a recall phenomenon after radiation therapy. Ann Intern Med 81: 407

    PubMed  CAS  Google Scholar 

  5. Durand RE (1976) Adriamycin: a possible indirect radiosensitizer of hypoxic tumor cells. Radiology 119: 217

    PubMed  CAS  Google Scholar 

  6. Durand RE (1976) Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet 9: 403

    PubMed  CAS  Google Scholar 

  7. Durand RE (1981) Flow cytometry studies of intracellular Adriamycin in multicell spheroids in vitro. Cancer Res 41: 3495

    PubMed  CAS  Google Scholar 

  8. Durand RE (1986) Chemosensitivity testing in V79 spheroids: drug delivery and cellular microenvironment. J Natl Cancer Inst 77: 247

    PubMed  CAS  Google Scholar 

  9. Durand RE (1986) Use of a cell sorter for assays of cell clonogenicity. Cancer Res 46: 2775

    PubMed  CAS  Google Scholar 

  10. Durand RE (1989) Distribution and activity of antineoplastic drugs in a tumor model. J Natl Cancer Inst 81: 146

    Article  PubMed  CAS  Google Scholar 

  11. Durand RE, Olive PL (1981) Flow cytometry studies of intracellular Adriamycin in single cells in vitro. Cancer Res 41: 3489

    PubMed  CAS  Google Scholar 

  12. Egorin MJ, Hildebrand RC, Cimino EF, Bachur NR (1974) Cytofluorescence localization of Adriamycin and daunorubicin. Cancer Res 34: 2243

    PubMed  CAS  Google Scholar 

  13. Erlichman C, Vidgen D (1984) Cytotoxicity of Adriamycin in MGHU1 cells grown as monolayer cultures, spheroids and xenografts in immune-deprived mice. Cancer Res 44: 5369

    PubMed  CAS  Google Scholar 

  14. Gerlach JE, Kartner N, Bell DR, Ling V (1986) Multidrug resistance. Cancer Surv 5: 25

    PubMed  CAS  Google Scholar 

  15. Inoue S, Ohnuma T, Takaoka K, Suzuki Y, Kaneko M, Safirstein R, Holland JF (1987) Effects of doxorubicin and cisplatin on multicellular tumor spheroids from human lung cancer. Cancer Drug Deliv 4: 213

    PubMed  CAS  Google Scholar 

  16. Kaye S, Merry S (1985) Tumour cell resistance to anthracyclines. A review. Cancer Chemother Pharmacol 14: 96

    Article  PubMed  CAS  Google Scholar 

  17. Kerr DJ, Kaye SB (1987) Aspects of cytotoxic drug penetration, with particular reference to anthracyclines. A review. Cancer Chemother Pharmacol 19: 1

    Article  PubMed  CAS  Google Scholar 

  18. Kerr DJ, Wheldon TE, Kerr AM, Freshney RI, Kaye SB (1986) The effect of Adriamycin and 4′-deoxydoxorubicin on cell survival of human lung tumour cells grown in monolayer and as spheroids. Br J Cancer 54: 423

    PubMed  CAS  Google Scholar 

  19. Kerr DJ, Wheldon TE, Kerr AM, Kaye SB (1987) In vitro chemosensitivity testing using the multicellular tumor spheroid model. Cancer Drug Deliv 4: 63

    PubMed  CAS  Google Scholar 

  20. Kerr DJ, Wheldon TE, Russell JG, Maurer HR, Florence AT, Halbert GW, Freshney RI, Kaye SB (1987) The effect of non-ionic surfactant Brij 30 on the cytotoxicity of Adriamycin in monolayer spheroids and clonogenic culture systems. Eur J Cancer Clin Oncol 23: 1315

    Article  PubMed  CAS  Google Scholar 

  21. Kerr DJ, Wheldon TE, Hydes S, Kaye SB (1988) Cytotoxic drug penetration studies in multicellular tumour spheroids. Xenobiotica 18: 641

    Article  PubMed  CAS  Google Scholar 

  22. Kramer RA, Zakher J, Kim G (1988) Role of the glutathione redox cycle in acquired and de novo multidrug resistance. Science 241: 694

    Article  PubMed  CAS  Google Scholar 

  23. Krishan A, Ganapathi R (1979) Laser flow cytometry and cancer chemotherapy: detection of intracellular anthracyclines by flow cytometry. J Histochem Cytochem 27: 1655

    PubMed  CAS  Google Scholar 

  24. Kwok TT, Twentyman PR (1984) The response to cytotoxic drugs of EMT6 cells treated either as intact or disaggregated spheroids. Br J Cancer 51: 211

    Google Scholar 

  25. Nederman T, Carlsson I, Malmqvist M (1981) Penetration of substances into tumor tissue — a methodological study on cellular spheroids. In Vitro 17: 290

    Article  PubMed  CAS  Google Scholar 

  26. Olive PL (1986) Patterns of mutagen binding and penetration in multicell spheroids. Environ Mutagen 8: 705

    Article  PubMed  CAS  Google Scholar 

  27. Olive PL, Chaplin DJ, Durand RE (1985) Pharmacokinetics, binding and distribution of Hoechst 33342 in spheroids and murine tumours. Br J Cancer 52: 739

    PubMed  CAS  Google Scholar 

  28. Rice GC, Ling V, Schimke RT (1987) Frequencies of independent and simultaneous selection of Chinese hamster cells for methotrexate and doxorubicin (Adriamycin) resistance. Proc Natl Acad Sci USA 84: 9261

    Article  PubMed  CAS  Google Scholar 

  29. Ross WE (1985) DNA topoisomerases as targets for cancer therapy. Biochem Pharmacol 34: 4191

    Article  PubMed  CAS  Google Scholar 

  30. Soranzo C, Ingrosso A (1988) A comparative study of the effects of anthracycline derivatives on a human adenocarcinoma cell line grown as a monolayer and as spheroids. Anticancer Res 8: 369

    PubMed  CAS  Google Scholar 

  31. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240: 177

    Article  PubMed  CAS  Google Scholar 

  32. Sutherland RM, Eddy HA, Bareham B, Reich K, Vanantwerp D (1979) Resistance to Adriamycin in multicellular spheroids. Int J Radiat Oncol Biol Phys 5: 1225

    PubMed  CAS  Google Scholar 

  33. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF (1984) Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226: 466

    Article  PubMed  CAS  Google Scholar 

  34. Tritton TR, Yee G (1986) The anticancer agent Adriamycin can be actively cytotoxic without entering cells. Science 217: 248

    Article  Google Scholar 

  35. Twentyman PR (1979) Timing of assays: an important consideration in the determination of clonogenic cell survival both in vitro and in vivo. Int J Radiat Oncol Biol Phys 5: 1213

    PubMed  CAS  Google Scholar 

  36. Vindelov LL (1977) Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. A new method for rapid isolation and staining of nuclei. Virchows Arch [Cell Pathol] 24: 227

    CAS  Google Scholar 

  37. Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA over-replication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 85: 9533

    Article  PubMed  CAS  Google Scholar 

  38. Zwelling LA (1985) DNA topoisomerase II as a target of antineoplastic drug therapy. Cancer Metastasis Rev 4: 263

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, R.E. Slow penetration of anthracyclines into spheroids and tumors: a therapeutic advantage?. Cancer Chemother Pharmacol 26, 198–204 (1990). https://doi.org/10.1007/BF02897199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897199

Keywords

Navigation