Skip to main content
Log in

Sialylated glycoconjugates in chromophobe cell renal carcinoma compared with other renal cell tumors

Indication of its development from the collecting duct epithelium

  • Original Articles
  • Published:
Virchows Archiv B

Summary

The present study was designed to shed light on the extraordinary histochemical properties of the chromophobe cell renal carcinoma detected by Hale’s colloidal iron reaction. Special emphasis was laid on the lectin histochemical analysis of cytoplasmic glycoconju-gates. Binding of peanut agglutinin (PNA) and Erythrina cristagalli agglutinin (ECA) after enzymatic release of sialic acid and direct binding of Dolichos biflorus agglutinin (DBA) correlates well with the expression of binding sites for Sambucus nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA) revealing abundant sialylated carbohydrate moieties within the cytoplasm. This characteristic binding pattern differs considerably from the faint staining observed in the majority of other renal carcinomas, thus confirming that the chromophobe cell renal carcinoma is a distinct entity. However, the lectin binding pattern of renal oncocytoma obviously resembles that of chromophobe carcinoma indicating a close relationship between these renal tumors. Detailed analysis of adjacent renal parenchyma revealed a lectin binding pattern quite similar to that described in the chromophobe carcinomas exclusively in the intercalated cells lining the collecting duct. This finding suggests that the chromophobe cell renal carcinoma originates from the collecting duct epithelium. The detection of small complexes consisting of altered epithelia which display the morphological characteristics of chromophobe carcinoma and the histochemical properties of intercalated cells probably indicates the emergence of preneoplastic lesions preceding the development of chromophobe carcinoma. Even though further studies are clearly needed to elucidate the physiological role of the cellular glycoconjugates detected, the present results already provide valuable insight into the histogenesis and pathogenesis of the chromophobe cell renal carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bannasch P, Schacht U, Storch E (1974) Morphogenese und Mikromorphologie epithelialer Nierentumoren bei Nitrosomorpholin-vergifteten Ratten. I. Induktion und Histologie der Tumoren. Z Krebsforsch 81:311–331

    Article  CAS  Google Scholar 

  • Bannasch P, Krech R, Zerban H (1980) Morphogenese und Mikromorphologie epithelialer Nierentumoren bei Nitrosomorpholin-vergifteten Ratten. IV. Tubuläre Läsionen und basophile Tumoren. J Cancer Res Clin Oncol 98:243–265

    Article  PubMed  CAS  Google Scholar 

  • Bannasch P, Nogueira E, Zerban H (1989) Zytologie und Zytogenese experimenteller epithelialer Nierentumoren. Verh Dtsch Ges Pathol 73:301–313

    PubMed  CAS  Google Scholar 

  • Brown D, Roth J, Orci L (1985) Lectin-gold cytochemistry reveals intercalated cell heterogeneity along rat kidney collecting ducts. Am J Physiol 248:C348-C356

    PubMed  CAS  Google Scholar 

  • Etzler ME, Kabat A (1970) Purification and characterization of a lectin (plant hemagglutinin) with a blood group A specificity from Dolichos biflorus. Biochemistry 9:869–877

    Article  PubMed  CAS  Google Scholar 

  • Faraggiana T, Malchiodi F, Prado A, Churg J (1982) Lectinperoxidase conjugate reactivity in normal human kidney. J Histochem Cytochem 30:451–458

    PubMed  CAS  Google Scholar 

  • Hale CW (1946) Histochemical demonstration of acid mucopolysaccharides in animal tissues. Nature 204:745–747

    Google Scholar 

  • Hammarström S, Murphy LA, Goldstein JJ, Etzler ME (1977) Carbohydrate binding specificity of four N-acetyl-D-galactosamine-‘specific’ lectins: Helix pomatia A hemagglutinin, soy bean agglutinin, lima bean lectin, and Dolichos biflorus lectin. Biochemistry 16:2750–2755

    Article  PubMed  Google Scholar 

  • Hennigar RA, Schulte BA, Spicer SS (1985) Heterogeneous distribution of glycoconjugates in human kidney tubules. Anat Rec 211:376–390

    Article  PubMed  CAS  Google Scholar 

  • Holthöfer H, Virtanen I, Pettersson E, Törnroth T, Alfthan O, Linder E, Miettinen A (1981) Lectins as fluorescence microscopic markers for saccharides in the human kidney. Lab Invest 45:391–399

    PubMed  Google Scholar 

  • Holthöfer H (1983) Lectin binding sites in kidney. A comparative study of 14 animal species. J Histochem Cytochem 31:531–537

    PubMed  Google Scholar 

  • Holthöfer H, Schulte BA, Spicer SS (1988) Heterogeneity of apical glycoconjugates in kidney collecting ducts: Further studies using simultaneous detection of lectin binding sites and immuno-cytochemical detection of key transport enzymes. Histochem J 20:471–477

    Article  PubMed  Google Scholar 

  • Iglesias JL, Lis H, Sharon N (1982) Purification and properties of a D-galactose/N-Acetyl-D-galactosamin specific lectin from Erythrina cristagalli. Eur J Biochem 123:247–253

    Article  PubMed  CAS  Google Scholar 

  • LeHir M, Dubach UC (1982a) The cellular specificity of lectin binding in the kidney. I. A light microscopical study in the rat. Histochemistry 74:521–530

    Article  CAS  Google Scholar 

  • LeHir M, Dubach UC (1982b) The cellular specificity of lectin binding in the kidney. II. A light microscopical study in the rabbit. Histochemistry 74:531–540

    Article  CAS  Google Scholar 

  • LeHir M, Kaissling B, Koeppen BM, Wade JB (1982c) Binding of peanut lectin to specific epithelial cell types in kidney. Am J Physiol 242:117–120

    Google Scholar 

  • Lotan R, Scutelsky E, Danon D, Sharon N (1975) The purification, composition and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 250:8518–8523

    PubMed  CAS  Google Scholar 

  • Madsen KM, Tisher CC (1984) Response of intercalated cells of rat outer medullary collecting duct to metabolic acidosis. Lab Invest 51:268–276

    PubMed  CAS  Google Scholar 

  • Madsen KM, Tisher CC (1986) Structural-functional relationships along the distal nephron. Am J Physiol 250:F1-F15

    CAS  Google Scholar 

  • Mostofi FK (1981) Histopathological typing of kidney tumours. International Histologic Classification of Tumours, No. 25. Geneva, World Health Organization

    Google Scholar 

  • Murata F, Tsuyama S, Suzuki S, Hamada H, Ozawa M, Muramatsu T (1983) Distribution of glycoconjugates in the kidney studied by use of labelled lectins. J Histochem Cytochem 31:139–144

    PubMed  CAS  Google Scholar 

  • Nogueira E (1987) Rat renal carcinogenesis after chronic simultaneous exposure to lead acetate and N-nitrosodiethylamine. Virchows Arch [B] 53:365–374

    Article  CAS  Google Scholar 

  • Ortmann M, Klein PJ, Vierbuchen M, Fischer R, Uhlenbruck G (1983) Lectin- and immunohistochemical analysis of renal adenocarcinomas. In: Peters, H (ed), Protides of the biological fluids, Pergamon Press, Oxford pp 359–362

    Google Scholar 

  • Ortmann M, Vierbuchen M, Fischer R (1988) Renal oncocytoma. II. Lectin and immuohistochemical features indicating an origin from the collecting duct. Virchows Arch [B] 56:175–184

    CAS  Google Scholar 

  • Pereira ME, Kabat EA (1974) Specificity of purified hemagglutinin (lectin) from Lotus tetragonolobus. Biochemistry 13:3184–3192

    Article  PubMed  CAS  Google Scholar 

  • Pereira MEA, Kisailus EL, Gruezo F, Kabat A (1978) Immunochemical studies on the combining sites of blood groups H-specific lectin I from Ulex europaeus seeds. Arch Biochem Biophys 185:108–115

    Article  PubMed  CAS  Google Scholar 

  • Sata T, Lackie PM, Taatjes DJ, Peumans W, Roth J (1989) Detection of Neu5Ac (α2, 3) Gal (β1,4) GlcNAc sequence with the Leucoagglutinin from Maackia amurensis: Light and electron microscopic demonstration of differential tissue expression of terminal sialic acid in α2,3-and α2,6-linkage. J Histochem Cytochem 37:1577–1588

    PubMed  CAS  Google Scholar 

  • Schulte BA, Spicer SS (1983) Histochemical evaluation of mouse and rat kidneys with lectin-horseradish peroxidase conjugates. Am J Anat 168:345–362

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ (1987) The elderberry (Sambucus nigra) bark lectin recognizes the Neu5Ac(α2,6)Gal/GalNAc sequence. J Biol Chem 262:1596–1601

    PubMed  CAS  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry. John Wiley & Sons Inc. New York

    Google Scholar 

  • Störkel S, Steart PV, Drenckhahn D, Thoenes W (1989) The human chromophobe cell renal carcinoma: its probable relation to intercalated cells of the collecting duct. Virchows Arch [B] 56:237–245

    Google Scholar 

  • Stoward PJ, Spicer SS, Miller RL (1980) Histochemical reactivity of peanut lectin-horseradish peroxidase conjugate. J Histochem Cytochem 28:979–990

    PubMed  CAS  Google Scholar 

  • Sugii S, Kabat EA, Baer HH (1982) Further immunochemical studies on the combining sites of Lotus tetragonolobus and Ulex europaeus I and II lectins. Carbohydr Res 99:99–101

    Article  CAS  Google Scholar 

  • Taatjes DJ, Roth J, Peumans W, Goldstein IJ (1988) Elderberry bark lectin-gold techniques for the detection of Neu5Ac (α2,6) Gal/GalNAc sequences: applications and limitations. Histochem J 20:478–490

    Article  PubMed  CAS  Google Scholar 

  • Thoenes W, Störkel S, Rumpelt HJ (1985) Human chromophobe cell carcinoma. Virchows Arch [B] 48:207–217

    CAS  Google Scholar 

  • Thoenes W, Störkel S, Rumpelt HJ (1986) Histopathology and classification of renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics. Pathol Res Pract 181:125–143

    PubMed  CAS  Google Scholar 

  • Thoenes W, Baum HP, Störkel S, Müller M (1987) Cytoplasmic microvesicles in chromophobe cell renal carcinoma demonstrated by freeze fracture. Virchows Arch [B] 54:127–130

    CAS  Google Scholar 

  • Thoenes W, Störkel S, Rumpelt HJ, Moll R, Baum HP, Werner S (1988) Chromophobe cell renal carcinoma and its variants—a report of 32 cases. J Pathol 155:277–287

    Article  PubMed  CAS  Google Scholar 

  • Vierbuchen M, Klein PJ, Uhlenbruck G, Klein HO, Schäfer HE, Fischer R (1980) The significance of lectin receptors in the kidney and in hypernephroma (Renal adenocarcinoma). Rec Res Cancer Res 75:68–75

    CAS  Google Scholar 

  • Wang WC, Cummings RD (1988) The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type asn-linked oligosaccharides containing terminal sialic acid-linked α2,3 to penultimate galactose residues. J Biol Chem 263:4576–4585

    PubMed  CAS  Google Scholar 

  • Yariv J, Kalb J, Blumberg S (1972) Lotus tetragonolobus L-fucose binding protein. Methods Enzymology 28:356–360

    Google Scholar 

  • Zerban H, Nogueira E, Riedasch G, Bannasch P (1987) Renal oncocytoma: origin from the collecting duct. Virchows Arch [B] 308:360–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortmann, M., Vierbuchen, M. & Fischer, R. Sialylated glycoconjugates in chromophobe cell renal carcinoma compared with other renal cell tumors. Virchows Archiv B Cell Pathol 61, 123–132 (1992). https://doi.org/10.1007/BF02890414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02890414

Key words

Navigation