Skip to main content
Log in

Freeze-fracture features of epithelioid cells, multinucleated giant cells, and phagocytic macrophages

Investigations using the model of experimental autoimmune (anti-TBM) tubulo-interstitial nephritis

  • Original Articles
  • Published:
Virchows Archiv B

Summary

The freeze-fracture morphology of epithelioid cells, multinucleated giant cells (Langhans’ type), and phagocytic macrophages was investigated. The intensely folded and interdigitating surface membranes of epithelioid cells and multinucleated giant cells displayed no specialized areas of cell contact. The size of the intramembranous particles (IMP) and the fact that the area density of IMPs was higher in the cytoplasmic (P) faces than in the external (E) faces of the cell membranes agreed with observations in other eukaryotic cells. The area densities of the IMPs suggest lower transport rates of molecules across the cell membranes of granuloma cells than of certain epithelial cells. Small pits were detected in the surface membranes of the granuloma cells but an extrusion of granules was not observed. The cytoplasmic granules displayed very different sizes and shapes ranging from spherical to rod-shaped. The latter type of granules (probably primary lysosomes) dominated in multinucleated giant cells. The granule membranes were studded with IMPs whose area densities increased with the granule size. Multilamellar bodies with smooth (lipid) fracture faces were found only in phagocytic macrophages. The nuclear pores of the granuloma cells were distributed over the entire surfaces of the nuclei and displayed moderate clustering. The values of the area densities of the nuclear pores were in keeping with the values observed in mammalian and human epithelial or mesenchymal cells, indicating similar exchange rates of molecules between the nucleoplasm and the cytoplasm in these different cell types.

In a single phagocytic macrophage the E-face of the inner membrane of the nuclear envelope displayed a network of fine filaments whose nature is at present unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams DO (1983) The biology of granuloma. In: Joachim HL (ed) Pathology of granulomas. Raven Press, New York, pp 1–20

    Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983) Molecular biology of the cell. Garland, New York London

    Google Scholar 

  • Banner BF, Alroy J, Pauli BU, Carpenter JL (1978) An ultra- structural study of acinic cell carcinoma of the canine pan- creas. Am J Pathol 93:165–182

    PubMed  CAS  Google Scholar 

  • Baum HP, Thoenes W (1985) Differentiation of granuloma cells (epithelioid cells and multinucleated giant cells): a morpho- metric analysis. Investigations using the model of experi- mental autoimmune (anti-TBM) tubulo-interstitial nephri- tis. Virchows Arch [Cell Pathol] 50:181–192

    Article  CAS  Google Scholar 

  • Bosch M van den, Jacob W, Pattyn S (1980) Age-related evolu- tion of cell membrane invaginations of murine peritoneal macrophages. VII. Eur Congr Electron Microsc Den Haag 2:196–197

    Google Scholar 

  • Chambers TJ (1978) Multinucleate giant cells. J Pathol 126:125–148

    Article  PubMed  CAS  Google Scholar 

  • Daems WT, Breederoo P (1970) The fine structure of mononu- clear phagocytes as revealed by freeze-etching. In: van Furth R (ed) Mononuclear phagocytes. Blackwell Scientific Publications, Oxford, pp 29–42

    Google Scholar 

  • Deamer DW, Leonard R, Tardieu A, Branton D (1970) Lamel- lar and hexagonal lipid phases visualized by freeze-etching. Biochim Biophys Acta 219:47–60

    Article  PubMed  CAS  Google Scholar 

  • Epstein WL (1977) Granuloma formation in man. Pathobiol Ann 7:1–30

    CAS  Google Scholar 

  • Fawcett DW (1966) On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am J Anat 119:129–146

    Article  PubMed  CAS  Google Scholar 

  • Fisher HW, Cooper TW (1967) Electron microscope observa- tions on the nuclear pores of HeLa cells. J Cell Biol 35:40A

    Google Scholar 

  • Furth R van, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull WHO 46:845–852

    PubMed  Google Scholar 

  • Gusek W (1965) Histologie und elektronenmikroskopische komparative Zytologie tuberkulöser und epitheloidzelliger Granulome. Fortschr Tuberkuloseforsch 14:97–156

    Google Scholar 

  • Hasty DL, Hay ED (1978) Freeze-fracture studies of the devel- oping cell surface. II. Particle-free membrane blisters on glutaraldehyde-fixed corneal fibroblasts are artefacts. J Cell Biol 78:756–768

    Article  PubMed  CAS  Google Scholar 

  • Kraus B (1980) Mehrkernige Riesenzellen in Granulomen. Verh Dtsch Ges Pathol 64:103–125

    PubMed  CAS  Google Scholar 

  • Krieger A (1979) Experimentelle autoimmune tubulo-intersti- tielle Nephritis. Inaug Diss, München

    Google Scholar 

  • Langer KH, Thoenes W (1981) Characterization of cells in- volved in the formation of granuloma. An ultrastructural study on macrophages, epithelioid cells, and giant cells in experimental tubulo-interstitial nephritis. Virchows Arch [Cell Pathol] 36:177–194

    CAS  Google Scholar 

  • Langer KH, Thoenes W (1984) Endocytotic activity of epithe- lioid and Langhans’ giant cells. Tracer studies with ferritin in the tubulo-interstitial (anti-TBM) nephritis model. Vir- chows Arch [Cell Pathol] 47:177–182

    CAS  Google Scholar 

  • Maul GG, Deaven L (1977) Quantitative determination of nu- clear pore complexes in cycling cells with different DNA content. J Cell Biol 73:748–761

    Article  PubMed  CAS  Google Scholar 

  • Miyata K, Takaya K (1984) Intercellular junctions between macrophages in the regional lymph node of the rat after injection of large doses of steroids. Cell Tissue Res 236:351–355

    Article  PubMed  CAS  Google Scholar 

  • Müller-Hermelink HK, Kaiserling E (1980) Epitheloidzellreak- tionen im lymphatischen Gewebe. Verh Dtsch Ges Pathol 64:77–102

    PubMed  Google Scholar 

  • Orci L, Perrelet A (1975) Freeze-etch histology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Orci L, Amherdt M, Malaisse-Lagae F, Perrelet A, Dulin WE, Gerritsen GC, Malaissse WJ, Renold AE (1974) Morpho- logical characterization of membrane systems in A- and B- cells of the Chinese hamster. Diabetologia 10:529–539

    Article  PubMed  Google Scholar 

  • Papadimitriou JM, Robertson TA (1980) Exocytosis by macro- phage polykarya: an ultrastructural study. J Pathol 130:75–81

    Article  PubMed  CAS  Google Scholar 

  • Papadimitriou JM, Spector WG (1971) The origin, properties and fate of epithelioid cells. J Pathol 105:187–203

    Article  PubMed  CAS  Google Scholar 

  • Papadimitriou JM, Sforsina D, Papaelias L (1973) Kinetics of multinucleate giant cell formation and their modification by various agents in foreign body reactions. Am J Pathol 73:349–362

    PubMed  CAS  Google Scholar 

  • Rejthar A, Blumajer J (1974) Difference in density of nuclear pores in normal and malignant fibroblasts of Syrian hamster. Neoplasma 21:479–489

    PubMed  CAS  Google Scholar 

  • Smith DS, Smith U, Ryan JW (1972) Freeze-fractured lamellar body membranes of the rat lung great alveolar cells. Tissue Cell 4:457–468

    PubMed  CAS  Google Scholar 

  • Sugisaki T, Klassen J, Milgrom F, Andres GA, McCluskey RT (1973) Immunopathologic study of an autoimmune tu- bular and interstitial renal disease in Brown-Norway rats. Lab Invest 28:658–671

    PubMed  CAS  Google Scholar 

  • Thoenes W, Langer KH (1969) Die Endocytose-Phase der Ei- weißresorption im proximalen Nierentubulus. Untersuchun- gen am Ferritin-resorbierenden Einzeltubulus der Ratten- niere. Virchows Arch [Cell Pathol] 2:361–379

    CAS  Google Scholar 

  • Thoenes W, Sonntag W, Heine WD, Langer KH (1982) Cell fusion as a mechanism for the formation of giant cells (Langhans’ type). Autoradiographic findings in autoim- mune tubulo-interstitial nephritis of the rat. Virchows Arch [Pathol Anat] 41:45–50

    CAS  Google Scholar 

  • Tipperman R, Kasckow J, Herndon RM (1984) The fine struc- ture of macrophages in lysolecithin-induced demyelination: A freeze-fracture study. J Neuropathol Exp Neurol 43:522–530

    PubMed  CAS  Google Scholar 

  • van der Rhee HJ, van der Burgh-de Winter CPM, Daems WT (1979) The differentiation of monocytes into macrophages, epithelioid cells, and multinucleated giant cells in subcutane- ous granulomas. I. Fine structure. Cell Tissue Res 197:355–378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft (La 492/1-1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, H.P., Thoenes, W. Freeze-fracture features of epithelioid cells, multinucleated giant cells, and phagocytic macrophages. Virchows Archiv B Cell Pathol 53, 13–22 (1987). https://doi.org/10.1007/BF02890219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02890219

Key words

Navigation