Skip to main content
Log in

Kinetic model for the smectite to illite transformation in active geothermal systems

  • Bulletin
  • Published:
Chinese Science Bulletin

Abstract

The smectite to illite transformation in active geothermal systems of New Zealand can be simulated by a first-order reaction kinetic model, which provides direct estimates about the minumum ages of active geothermal systems themselves. The derived kinetic values show that the smectite to illite transformation is sensitive to both temperature and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eberl, D., Hower, J., Kinetics of illite formation,Geological Society of America Bulletin, 1976, 87: 1326.

    Article  CAS  Google Scholar 

  2. Huang, W. L., Long, J. M., Pevear, D. R., An experimentally derived kinetic model for smectite to illite convenion and its use as a geothermometer,Clay & Clay Minerals, 1993, 41: 162.

    Article  CAS  Google Scholar 

  3. Ji, J., Browne, P. R. L., Experiments using natural thermal waters, on the illitization of interlayered illite-smectite and the crystallinity of illite, inProceedings of the New Zealand Geothermal Workshop, 1995, 17: 41.

    Google Scholar 

  4. Elliott, W. C., Matisoff, G., Evaluation of kinetic models for the smectite to illite transformation,Clays & Clay Minerals, 1996, 44: 77.

    Article  CAS  Google Scholar 

  5. Velde, B., Vasseur, G., Estimation of the diagenetic smectite-to-illite transformation in time-temperature space,Am. Mineral., 1992, 77: 967.

    CAS  Google Scholar 

  6. Pytte, A. M., Reynolds, R. C., The thermal transformation of smectite to illite, inThermal Histories of Sedimentary Basins (eds. N. D. Naeser, T. H. McCulloh), New York: Springer-Verlag, 1989, 133–140.

    Google Scholar 

  7. Harvey, C. C., Browne, P. R. L., Mixed-layer clay geothermometry in the Wairakei geothermal field. New Zealand,Clays & Clay Minerals, 1991, 39: 614.

    Article  CAS  Google Scholar 

  8. Henly, R. W., Hedenquist, J. W., Roberts, P. J., Guide to the active epithermal (geothermal) systems and precious methal deposits of New Zealand,Monograph Series on Mineral Deposits, Berlin-Stuttgart: Gebruder Borntrager, 1986. 26: 65.

    Google Scholar 

  9. Browne, P. R. L., Minimum age of the Kawarau geothermal system,Journal of Volcanology and Geothermal Research, 1979, 6: 213.

    Article  Google Scholar 

  10. Weissberg, B. G., Browne, P. R. L., Seward, T. M., Ore metals in active geothermal systems, inGeochemistry of Hydrothermal Ore Deposits (ed. H. L. Barnes), New York: Wiley, 1979, 738–780.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Junfeng, J., Browne, P.R.L., Yingjun, L. et al. Kinetic model for the smectite to illite transformation in active geothermal systems. Chin. Sci. Bull. 43, 1042–1044 (1998). https://doi.org/10.1007/BF02884645

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02884645

Keywords

Navigation