Skip to main content
Log in

Comparative study of QTLs for agronomic traits of riceOriza sativa L.) between salt stress and nonstress environment

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Genotype-by-environment interactions (GxE) are commonly observed for quantitative traits. In the present study, a doubled haploid (DH) population and its genetic linkage map were used to comparatively study QTLs in salt stress and nonstress environments. A total of 24 QTLs were detected for five agronomic traits, which were distributed on all the chromosomes except 9 and 11. Under the salt stress, nine (37.5%) QTLs were detected, including one for 1 000-grain weight (GW), two for heading date (HD), one for plant height (PH), two for grains per panicle (GPP), and three for effective tillers (ET), while in the nonstress environment, 17 QTLs (70.8%) were detected, including five for GW, six for HD, three for PH, two for GPP, and one for ET. Two QTLs (8.3%) were consistently detected in both environments. One was identified on chromosome 4 for HD and the other on Chr.6 for GPP. Furthermore, three regions carrying multiple QTLs were identified on chromosomes 1, 4 and 8 respectively. For example, on chromosome 8, three QTLs for HD, GW and PH, respectively were identified between RG885-GA408 in nonstress environment, but not in the stress environment. The comparative study of QTLs detected in extremely different (salt stress and nonstress) environments revealed that there existed several QTLs for important agronomic traits on chromosome 8 which were affected significantly by salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshiyo Mano, Kazuyoshi Takeda, Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.), Euphytica, 1997,94: 263.

    Article  Google Scholar 

  2. Breto, M. P., Asins, M. J., Carbonell, E. A., Salt tolerance inLycopersicon Species III—Detection of quantitative trait loci by means of molecular markers, Theor. Appl. Genet., 1994,88: 395.

    Article  CAS  Google Scholar 

  3. Foolad, M. R., Chen, F. Q., Lin, G. Y., RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato, Theor. Appl. Genet., 1998,97: 1133.

    Article  CAS  Google Scholar 

  4. Foolad, M. R., Jones, R. A., Mapping salt-tolerance genes in tomato (Lycopersicon esculeutum) using trait-based marker analysis, Theor. Appl. Genet., 1993,87: 184.

    Article  CAS  Google Scholar 

  5. Li, Z. K., Pinson, S. R. M., Stansel, J. W. et al., Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.), Theor. Appl. Genet., 1995,91: 374.

    CAS  Google Scholar 

  6. Lin, H. X., Qian, H. R., Zhang, J. Y. et al., RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.), Theor. Appl. Genet., 1996,92: 920.

    Article  CAS  Google Scholar 

  7. Lu, C., Shen, L., Tan, Z. et al., Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population, Theor. Appl. Genet., 1997,94: 145.

    Article  PubMed  CAS  Google Scholar 

  8. Wu, P., Zhang, G., Huang, N., Identification of QTLs controlling quantitative characters in rice using RFLP markers, Euphytica, 1996,89: 349.

    CAS  Google Scholar 

  9. Champoux, M. C., Wang, G., Sarkarung, S. et al., Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers, Theor. Appl. Genet., 1995,90: 969.

    Article  CAS  Google Scholar 

  10. Gong, J., He, P., Qian, Q. et al., Identification of salt tolerance QTLs in rice (Oryza sativa L.), Chinese Science Bulletin, 1999,44{(sn1)}: 68.

    Article  Google Scholar 

  11. Lin, H., Yanagihara, S., Zhuang, J. et al., Identification of QTL for salt tolerance in rice via molecular markers, Chinese Journal of Rice Science, 1998,12 {(sn2)}: 72.

    Google Scholar 

  12. Zhang, G. Y., Guo, Y., Chen, S. L. et al., RFLP tagging of a salt tolerance gene in rice, Plant Science, 1995,110: 227.

    Article  CAS  Google Scholar 

  13. Austin, D. F., Genetic analysis of quantitative trait loci with inbred and hybrid progeny of maize, Ph. D. Diss., Iowa State University (Diss. Abstr. ISU 1995 A97) (1997).

  14. Ribaut, J. M., Hoisington, D. A., Duetsch, J. A. et al., Identification of quantitative trait loci under drought conditions in tropical maize (1)—Flowering parameters and the anthesis-silking interval, Theor. Appl. Genet., 1996,92: 905.

    Article  CAS  Google Scholar 

  15. Veldboom, L. R., Lee, M., Genetic mapping of quantitative trait loci in maize in stress and nonstress environments (II)—Plant height and flowering, Crop Sci., 1996,36: 1320.

    CAS  Google Scholar 

  16. Austin, D. F., Lee, M., Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments, Crop Sci., 1998,38: 1296.

    CAS  Google Scholar 

  17. Stuber, C. W., Lincoln, S. E., Wolff, D. W., Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers, Genetics, 1992,132: 823.

    PubMed  CAS  Google Scholar 

  18. Beavis, W. D., Keim, P., Identification of QTLs that are affected by the environment, in New Perspectives on Genotype-by-environment Interactions (eds. Kang, M. S., Hugh, H. G.), FL: CRC Press, 1996.

  19. Paterson, A. H., Damon, S., Hewitt, J. D. et al., Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments, Genetics, 1991,127: 181.

    PubMed  CAS  Google Scholar 

  20. Lee, S. H., Bailey, M. A., Mian, M. A. R., Molecular markers associated with soybean plant height, lodging and maturity across locations, Crop Sci., 1996,36: 728.

    CAS  Google Scholar 

  21. Bubeck, D. M., Goodman, M. M., Beavis, W. D. et al., Quantitative trait loci controlling resistance to gray leaf spot in maize, Crop Sci., 1993,33: 838.

    Google Scholar 

  22. Narayanan, K. K., Rangasamy, S. R., Genetic analysis for salt tolerance in rice, Rice Genetics, II, Manila: IRRI, 1991, 167–173.

    Chapter  Google Scholar 

  23. McWilliam, J. R., The national and international importance of drought and salinity effects on agricultural production, Aust. J. Plant Physiol., 1986,13: 1.

    Article  Google Scholar 

  24. Christiansen, M. N., World environmental limitations to food and fibre culture, in Breeding Plants for Less Favorable Environments (eds, Christiansen, M. N., Lewis, C. F.), New York: Wiley, 1982, 1–11.

    Google Scholar 

  25. Shen, L., He, P., Xu, Y. et al., Genetic molecular linkage map construction and genome analysis of rice doubled haploid population, Acta Botanica Sinica (in Chinese), 1998,40 {(sn12)}: 1115.

    CAS  Google Scholar 

  26. Zhu, L., He, P., Genetic molecular linkage map construction and mapping the important quality and quantitative trait loci in rice (Oryza sativa L.), Journal of Fudan University (Natural Science), 1998,37{(sn4)}: 509.

    CAS  Google Scholar 

  27. Lander, E. S., Green, P., Abrahamson, J. et al., An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations, Genomics, 1987,1: 174.

    Article  PubMed  CAS  Google Scholar 

  28. McCouch, S. R., Cho, Y. G., Yano, M. et al., Report on QTL nomenclature, Rice Genet. Newslett., 1997,14: 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shouyi Chen or Lihuang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, J., Zheng, X., Du, B. et al. Comparative study of QTLs for agronomic traits of riceOriza sativa L.) between salt stress and nonstress environment. Sci. China Ser. C.-Life Sci. 44, 73–82 (2001). https://doi.org/10.1007/BF02882075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02882075

Keywords

Navigation