Skip to main content
Log in

Preparation of starch-based polyurethane films and their mechanical properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, polyurethane films were prepared using starch as the main polyol component, and the mechanical properties of these films were investigated. The starch content of the polyols was 30–50 wt%. To confirm the formation of a urethane linkage between the −OH of starch and −NCO of toluene 2,4-diisocyanate, Fourier transform infrared (FT-IR) spectroscopic analysis was performed. Differential scanning calorimetry (DSC) thermograms of the polyurethanes resulted in two endothermic peaks, which shifted to higher temperatures with increasing starch content and −NCO/−OH molar ratio. Due to the melting behavior of polyurethane, films could be prepared by hot pressing at an appropriate temperature. Polyurethane films were prepared with various polyol starch content and −NCO/−OH molar ratios. Tensile testing indicated that the breaking stress and elastic modulus increased significantly with starch content and −NCO/−OH molar ratio. In addition, bending tests indicated an increase in breaking stress and bending modulus with starch content and −NCO/−OH molar ratio and decreased breaking strain. The strain rate in both tensile and bending tests had a significant effect on the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Ellis, M. P. Cochrane, M. F. P. Dale, C. M. Duffus, A. Lynn, I. M. Morrison, R. D. M. Prentice, J. S. Swanston, and S. A. Tiller,J. Sci. Food. Agr.,77, 289 (1998).

    Article  CAS  Google Scholar 

  2. I. Arvanitoyannis, C. G. Biliaderis, H. Ogawa, and N. Kawasaki,Carbohyd. Polym.,36, 89 (1998).

    Article  CAS  Google Scholar 

  3. P. B. Shah, S. Bandopadhyay, and J. R. Bellare,Polym. Degrad. Stabil.,47, 165 (1995).

    Article  CAS  Google Scholar 

  4. Z. Yang, M. Bhattacharya, and U. R. Vaidya,Polymer,37, 2137 (1996).

    Article  CAS  Google Scholar 

  5. N. S. Pierra, B. D. Favis, B. A. Ramsay, and J. A. Ramsay,Polymer,38, 647 (1997).

    Article  Google Scholar 

  6. D. Zuchowska, R. Steller, and W. Meissner,Polym. Degrad. Stabil.,60, 471 (1998).

    Article  CAS  Google Scholar 

  7. B. T. Nwufo,J. Appl. Polym. Sci.,23, 2023 (1985).

    CAS  Google Scholar 

  8. A. S. Sokhey, A. N. Kollengode, and M. A. Hanna,J. Food Sci.,59, 895 (1994).

    Article  Google Scholar 

  9. N. L. Lacourse and P. A. Altiere,U.S. Patent, 4863655 (1989).

  10. D. Bikiaris, J. Prinos, and C. Panayiotou,Polym. Degrad. Stabil.,56, 1 (1997).

    Article  CAS  Google Scholar 

  11. S. C. Warburton and A. M. Donald,J. Mater. Sci.,25, 4001 (1990).

    Article  CAS  Google Scholar 

  12. G. Oertel, “Polyurethane Handbook”, Hanser Publishers, Munich, 1985.

    Google Scholar 

  13. S. K. Ha and H. C. Broecker,Polymer,43, 5227 (2002).

    Article  CAS  Google Scholar 

  14. S. D. Desai, J. V. Patel, and V. K. Sinha,Int. J. Adhes. Ades.,23, 393 (2003).

    Article  CAS  Google Scholar 

  15. Y. Yao, M. Yoshioka, and N. Shiraishi,J. Appl. Polym. Sci.,60, 1939 (1996).

    Article  CAS  Google Scholar 

  16. X. Cao, L. Zhang, J. Huang, G. Yang, and Y. Wang,J. Appl. Polym. Sci.,90, 3325 (2003).

    Article  CAS  Google Scholar 

  17. R. Garcon, C. Clerk, J. P. Gesson, J. Bordado, T. Nunes, S. Caroco, P. T. Gomes, M. E. M. D. Piedade, and A. P. Rauter,Carbohyd. Polym.,45, 123 (2001).

    Article  CAS  Google Scholar 

  18. S. Ryabov, N. Kotelnikova, Y. Kercha, S. Laptiy, R. Gaiduk, L. Kosenko, and Yakovenko,Macromol. Symp.,164, 421 (2001).

    Article  CAS  Google Scholar 

  19. R. L. Cunningham, M. E. Carr, and E. B. Bagley,J. Appl. Polym. Sci.,44, 1477 (1992).

    Article  CAS  Google Scholar 

  20. J. Ge, W. Zhong, Z. Guo, W. Li, and K. Sakai,J. Appl. Polym. Sci.,77, 2575 (2000).

    Article  CAS  Google Scholar 

  21. S. H. Lee, Y. Teramoto, and N. Shiraishi,J. Appl. Polym. Sci.,83, 1482 (2002).

    Article  CAS  Google Scholar 

  22. B. K. K. Swamy and Siddaramaiah,J. Appl. Polym. Sci.,90, 2945 (2003).

    Article  CAS  Google Scholar 

  23. S. K. Ha and H. C. Broecker,Macromol. Mater. Eng.,288, 569 (2003).

    Article  CAS  Google Scholar 

  24. R. L. Cunningham, M. E. Carr, E. B. Bagley, S. H. Gordon, and R. V. Greene,J. Appl. Polym. Sci.,51, 1311 (1994).

    Article  CAS  Google Scholar 

  25. D. H. Kim, O. J. Kwon, S. R. Yang, J. S. Park, and B. C. Chun,Fibers and Polymers,8, 155 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Shin Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DH., Kwon, OJ., Yang, SR. et al. Preparation of starch-based polyurethane films and their mechanical properties. Fibers Polym 8, 249–256 (2007). https://doi.org/10.1007/BF02877266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02877266

Keywords

Navigation