Skip to main content
Log in

Optimum manufacturing conditions of activated carbon fiber absorbents. II. Effect of carbonization and activation conditions

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, viscose rayon-based knitted fabrics were utilized as the precursor to produce activated carbon fiber absorbents (ACFA). The effects of carbonization and activation conditions on characteristics (ACFA) were examined. Experimental results revealed that increasing the flow rate of environmental gas N2 and steam activator used in conjunction and decreasing the production rate of ACFA can obtain better pore properties. However, higher flow rate of steam activator and lower production rate of ACFA reduced the weight yield. According to our findings, to maintain good absorption property of ACFA, the optimum manufacturing conditions are flow rate of gas N2 at 80 cc/min, flow rate of steam activator at 60 ml/min, and production rate of ACFA at 30 cm/min, with flame retardant reagent concentration maintained at 30%. Under these conditions, the weight yield can be up to 40.85% and the BET surface area can exceed 1500 g/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Abbott,U.S. Patent, 3179605 (1965).

  2. W. Watt and B. V. Perov, “Handbook of Composites”, Vol. 1, pp.327–387, Elsevier Science Publishers B.V., North-Holland, 1985.

    Google Scholar 

  3. J. B. Parra, J. C. De Sousa, J. J. Pis, J. A. Pajares, and R. C. Bansal,Carbon,33, 801 (1995).

    Article  CAS  Google Scholar 

  4. S. F. Grebennikov and L. I. Fridman,Fiber Chem.,19, 385 (1987).

    Article  Google Scholar 

  5. J. D. de López-González, F. Martínez-Vilchez, and F. Rodríguez-Reinoso,Carbon,18, 413 (1980).

    Article  Google Scholar 

  6. S. Lowell and J. E. Shields, “Powder Surface Area and Porosity”, p.22, Chapman and Hall Pub., USA, 1984.

    Google Scholar 

  7. R. Nacco and E. Aquarone,Carbon,16, 31 (1978).

    Article  CAS  Google Scholar 

  8. F. Rodríguez-Reinoso and M. Molina-Sabio,Carbon,30, 1111 (1992).

    Article  Google Scholar 

  9. R. Torregrosa and J. M. Martín-Martínez,Fuel,70, 1173 (1991).

    Article  CAS  Google Scholar 

  10. J. Alcañiz-Monge, D. Cazorla-Amorós, A. Linares-Solano, S. Yoshida, and A. Oya,Carbon,32, 1277 (1994).

    Article  Google Scholar 

  11. C. H. Wang,U. S. Patent, 5819350 (1998).

  12. ASTM D5035-95, “Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method)”, American Society for Testing and Materials, 2003.

  13. ASTM D1388-96, “Standard Test Method for Stiffness of Fabrics”, American Society for Testing and Materials, 2002.

  14. ASTM D1776-98, “Standard Practice for Condition and Testing Textiles”, American Society for Testing and Materials, 2003.

  15. S. J. Greeg and K. S. W. Sing, “Absorption, Surface Areas and Porosity”, pp.42–54, Academic Press, London, New York, 1982.

    Google Scholar 

  16. S. Brunauer, P. H. Emmett, and E. Teller,J. Am. Chem. Soc.,60, 309 (1938).

    Article  CAS  Google Scholar 

  17. S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller,J. Am. Chem. Soc.,62, 1723 (1940).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Iuan Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, CI., Wang, CL. Optimum manufacturing conditions of activated carbon fiber absorbents. II. Effect of carbonization and activation conditions. Fibers Polym 8, 482–486 (2007). https://doi.org/10.1007/BF02875869

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875869

Keywords

Navigation