Skip to main content
Log in

The O−Zn (Oxygen-Zinc) system

  • O−Zn
  • Published:
Journal of Phase Equilibria

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Cited References

  • 1889Mor: H.N. Morse and J. White, Jr., “The Dissociation of the Oxides of Zinc and Cadmium in Vapors of Their Respective Metals,”Am. Chem. J., 11, 258–263 (1889). (Equi Diagram; Experimental)

    Google Scholar 

  • 09Ebl: E. Ebler, “On Pseudoradioactive Substances,”Z. Chem., 22, 1633–1635 (1909) in German. (Meta Phases; Experimental)

    Google Scholar 

  • 11Ebl: E. Ebler and R.L. Krause, “On ‘Zinkperoxyt (Zinkmoloxyd, Zinkperoxydat)’, ZnO2·1/2H2O, and a General Method for Production of ‘Peroxyten’,”Z. Anorg. Chem., 71, 150–165 (1911) in German. (Equi Diagram; Experimental)

    Google Scholar 

  • 15Bra: W.H. Bragg and W.L. Bragg,X Rays and Crystal Structure, G. Bell and Sons, London (1915). (Crys Structure; Review)

    MATH  Google Scholar 

  • 20Bra: W.L. Bragg, “The Crystalline Structure of Zinc Oxide,”Philos. Mag., 39, 647–651 (1920). (Crys Structure; Experimental)

    Google Scholar 

  • 21Ami: G. Aminoff, “Laue Photograms and Structure of Zincite,”Z. Kristallogr., 56, 495–505 (1921) in German. (Crys Structure; Experimental)

    Google Scholar 

  • 24Moo: J.E. Moose and S.W. Parr, “A Re-Determination of the Heats of Oxidation of Certain Metals,”J. Am. Chem. Soc., 46, 2656–2661 (1924). (Thermo; Experimental)

    Google Scholar 

  • 26Mai1: C.G. Maier and O.C. Ralston, “Reduction Equilibria of Zinc Oxide and Carbon Monoxide,”J. Am. Chem. Soc., 48, 364–374 (1926). (Thermo; Experimental)

    Google Scholar 

  • 26Mai2: C.G. Maier, G.S. Parks, and C.T. Anderson, “The Free Energy of Formation of Zinc Oxide,”J. Am. Chem. Soc., 48, 2564–2576 (1926). (Thermo; Experimental)

    Google Scholar 

  • 27Par: G.S. Parks, C.E. Hablutzel, and L.E. Webster, “The Heat of Formation of Zinc Oxide,”J. Am. Chem. Soc., 49, 2792–2795 (1927). (Thermo; Experimental)

    Google Scholar 

  • 28Clu: K. Clusius and P. Harteck, “On the Specific Heats of Some Solid Bodies at Low Temperature,”Z. Phys. Chem., 134, 243–263 (1928) in German. (Thermo; Experimental)

    Google Scholar 

  • 28Mil: R.W. Millar, “The Heat Capacity at Low Temperatures of Zinc Oxide and of Cadmium Oxide,”J. Am. Chem. Soc., 50, 2653–2656 (1928). (Thermo; Experimental)

    Google Scholar 

  • 28Tho: J.J. Thomson, “The Electrodeless Discharge through Gases,”Proc. Phys. Soc., (London), 40, 79–89 (1928). (Equi Diagram, Meta Phases; Experimental)

    ADS  Google Scholar 

  • 29Fei: I. Feiser, “On the Volatility of Oxides of Lead, Cadmium, Zinc and Tin,”Metall Erz, 26(11), 269–284 (1929) in German. (Thermo; Experimental)

    Google Scholar 

  • 30Mai: C.G. Maier, “The Heat of Formation of Zinc Oxide,”J. Am. Chem. Soc., 52(6), 2159–2170 (1930). (Thermo; Experimental)

    Google Scholar 

  • 30Bun: E.N. Bunting, “Phase Equilibria in the System SiO2−ZnO,”J. Am. Ceram. Soc., 13, 5–10 (1930). (Equi Diagram; Experimental)

    Google Scholar 

  • 32Bra: W.L. Bragg and J.A. Darbyshire, “Structure of Thin Films of Certain Metallic Oxides,”Trans. Faraday Soc., 28, 522–529 (1932). (Crys Structure; Experimental)

    Google Scholar 

  • 32Hut: G.F. Hüttig and K. Toischer, “Active Oxides. LIII. Natural Constants of the Stable Zinc Oxide,”Z. Anorg. Chem., 207, 273–288 (1932) in German. (Crys Structure; Review)

    Google Scholar 

  • 33Bau: H.H. von Baumbach and C. Wagner, “The Electrical Conductivity of Zinc Oxide and Cadmium Oxide,”Z. Phys. Chem. B, 22, 199–211 (1933) in German. (Crys Structure; Experimental)

    Google Scholar 

  • 33Bec: G. Becker and W.A. Roth, “On the Heat of Formation of Cadmium Oxide, Cadmium Hydroxide and Zinc Oxide,”Z. Phys. Chem. A, 167, 1–15 (1933) in German. (Thermo; Experimental)

    Google Scholar 

  • 33Kel: K.K. Kelley, “Contributions to the Data on Theoretical Metallurgy. II. High-Temperature Specific-Heat Equations for Inorganic Substances,” Bulletin 371, U.S. Bureau of Mines (1933). (Thermo; Compilation)

  • 35Bra: H. Braekken and O. Jore, “An X-Ray Investigation of the Thermal Expansion of Zinc Oxide and Beryllium Oxide,” Kongelige Norske Videnkabers Selskabs, Skrifter 1935, No. 8 (1935) in German. (Crys Structure; Experimental)

  • 35Bun: C.W. Bunn, “The Lattice Dimensions of Zinc Oxide,”Proc. Phys. Soc. (London), 47, 835–842 (1935). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 40Bod: M. Bodenstein, “The Equilibrium of the Reaction ZnO+CO⇆ZnGas+CO. I,”Z. Elektrochem., 46(3), 132–134 (1940). (Thermo; Experimental)

    Google Scholar 

  • 40Hol: C.B. Holtermann, “Experimental Researches on Direct Oxidation under Elevated Pressure. The Oxides of Strontium, Barium, Lead, Manganese and Cobalt,”Ann. Chim., 14(11), 121–206 (1940) in French. (Thermo; Experimental)

    Google Scholar 

  • 41Tru: E.C. Truesdale and R.K. Waring, “Reduction Equilibria of Zinc Oxide and Carbon Monoxide,”J. Am. Chem. Soc., 63, 1610–1621 (1941). (Thermo; Experimental)

    Google Scholar 

  • 42Mak: I.A. Makolkin, “Electrochemical Determination of Thermodynamic Constants of Oxides of Several Metals,”J. Phys. Chem. (USSR), 16, 13–17 (1942) in Russian;Chem. Abst., 37, 2641 (1943). (Thermo; Experimental)

    Google Scholar 

  • 44Fai: R. Faivre, “Contribution to the Study of Active Oxides and of the Problem of Metallic Sub-Oxides,”Ann. Chim. (Ser. 11), 19, 58–101 (1944) in French. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 44Pou: M. Pourbaix, “The Sublimation of Zinc Oxide,”Bull. Soc. Chim. Belg., 53(11), 159–165 (1944) in French. (Thermo; Review)

    Google Scholar 

  • 49Kel: K.K. Kelley, “Contributions to the Data on Theoretical Metallurgy. X. High-Temperature Heat-Content, Heat-Capacity and Entropy Data for Inorganic Compounds,” Bulletin 476, U.S. Bureau of Mines (1949). (Thermo; Compilation)

  • 51Bre: L. Brewer and D.F. Mastick, “The Stability of Gaseous Diatomic Oxides,”J. Chem. Phys., 19(7), 834–843 (1951). (Thermo; Experimental)

    ADS  Google Scholar 

  • 51Kit: J.A. Kitchener and S. Ignatowicz, “The Reduction Equilibria of Zinc Oxide and Zinc Silicate with Hydrogen,”Trans. Faraday Soc., 47, 1278–1286 (1951). (Thermo; Experimental)

    Google Scholar 

  • 53Swa: H.E. Swanson and R.K. Fuyat, Standard X-Ray Diffraction Powder Patterns, Nat. Bur. Stand. (U.S.), Circular 539,2, 27–28 (1953). (Crys Structure; Experimental)

    Google Scholar 

  • 54Cou: J.P. Coughlin, “Contributions to the Data on Theoretical Metallurgy. XII. Heats and Free Energies of Formation of Inorganic Oxides,” Bulletin 542, U.S. Bureau of Mines (1954). (Thermo; Compilation)

  • 54Gra: T.J. Gray, “Sintering of Zinc Oxide,”J. Am. Ceram. Soc., 37(11), 534–539 (1954). (Crys Structure; Experimental)

    Google Scholar 

  • 54Sch: D.L. Schechter and J. Kleinberg, “Reactions of Some Metal Salts with Alkali Superoxides in Liquid Ammonia,”J. Am. Chem. Soc., 76, 3297–3300 (1954). (Equi Diagram; Experimental)

    Google Scholar 

  • 54Vol: I.I. Vol'nov, “Thermography of Peroxide Compounds,”Dokl. Akad. Nauk SSSR, 94(3), 477–479 (1954) in Russian. (Equi Diagram; Experimental)

    Google Scholar 

  • 56Eng: H.-J. Engell, “Electrochemical Determination of the Deviation from Stoichiometry in Metal Oxides,”Z. Elektrochem., 60(8), 905–911 (1956) in German. (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 56Mak: S.Z. Makarov and L.V. Ladeіnova, “Synthesis of Zinc Peroxide,”Zh. Neorg. Khim., 1(12), 2708–2711 (1956) in Russian; TR:J. Inorg. CHem. USSR, 1 (12), 64–67 (1956). (Equi Diagram; Experimental)

    Google Scholar 

  • 57Bea: R.J. Beals and R.L. Cook, “Directional Dilation of Crystal Lattices at Elevated Temperatures,”J. Am. Ceram. Soc., 40(8), 279–284 (1957). (Crys Structure; Experimental)

    Google Scholar 

  • 57Mak1: S.Z. Makarov and L.V. Ladeіnova, “Studies of Systems with Concentrated Hydrogen Peroxide. Report 12. Ternary System Zn(OH)2−H2O2−H2O,”Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk, (1), 3–17 (1957) in Russian. (Equi Diagram; Experimental)

    Google Scholar 

  • 57Mak2: S.Z. Makarov and L.V. Ladeіnova, “Studies of Systems with Concentrated Hydrogen Peroxide. Report 13. Study of the Properties of Peroxide Compounds of Zinc,”Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk, (2), 139–142 (1957) in Russian. (Equi Diagram; Experimental)

    Google Scholar 

  • 57Sec: E.A. Secco and W.J. Moore, “Diffusion and Exchange of Zinc in Crystalline Zinc Oxide,”J. Chem. Phys., 26(4), 942–948 (1957). (Thermo; Experimental)

    ADS  Google Scholar 

  • 57Tho: D.G. Thomas, “Interstitial Zinc in Zinc Oxide,”J. Phys. Chem. Solids, 3, 229–237 (1957). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 58Vol: I.I. Vol'nov, “Heating Curves of Hydrates of the Second Group of Metal Peroxides,”Zh. Neorg. Khim., 3, 538–539 (1958) in Russian; TR:J. Inorg. Chem. USSR., 3, 402–403 (1958). (Equi Diagram; Experimental)

    Google Scholar 

  • 59All: H.J. Allsopp and J.P. Roberts, “Non-Stoichiometry of Zinc Oxide and Its Relation to Sintering. Part 1. Determination of Non-Stoichiometry in Zinc Oxide,”Trans. Faraday Soc., 55, 1386–1393 (1959). (Equi Diagram; Experimental)

    Google Scholar 

  • 59Boi: V.F. Boiko, “Synthesis of Zinc Peroxide and the Determination of Its Composition by the Method of the Indifferent Component,”Nauch. Dokl. Vysshei Shkoly, Khim. Khim. Tekhnol., (1), 57–61 (1959) in Russian. (Equi Diagram; Experimental)

    Google Scholar 

  • 59Edw: A.L. Edwards, T.E. Slykhouse, and H.G. Drickamer, “The Effect of Pressure on Zinc Blende and Wurtzite Structures,”J. Phys. Chem. Solids, 11, 140–148 (1959). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 59Hof: C.W.W. Hoffmann, R.C. Ropp, and R.W. Mooney, “Preparation, Properties and Structure of Cadmium Peroxide,”J. Am. Chem. Soc., 81, 3830–3834 (1959). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 59Moo1: W.J. Moore and E.L. Williams, “Diffusion of Zinc and Oxygen in Zinc Oxide,”Disc. Faraday Soc., (28), 86–93 (1959). (Equi Diagram, Thermo; Experimental)

    Google Scholar 

  • 59Moo2: W.J. Moore and E.L. Williams, “Decomposition of Zinc Oxide by Zinc Vapor,”J. Phys. Chem., 63, 1516–1517 (1959). (Thermo; Experimental)

    Google Scholar 

  • 59Van1: N.-G. Vannerberg, “The Infrared Spectra of Some Peroxide Hydrates,”Arkiv Kemi, 14(11), 107–113 (1959). (Equi Diagram; Experimental)

    Google Scholar 

  • 59Van2: N.-G. Vannerberg, “Formation and Structure of Zinc Peroxide,”Arkiv Kemi, 14(13), 119–124 (1959). (Crys Structure; Experimental)

    Google Scholar 

  • 60Sec: E.A. Secco, “Decomposition of Zinc Oxide,”Can. J. Chem., 38, 596–601 (1960). (Thermo; Experimental)

    Google Scholar 

  • 61Kel: K.K. Kelley and E.G. King, “Contributions to the Data on Theoretical Metallurgy. XIV. Entropies of the Elements and Inorganic Compounds,” Bulletin 592, U.S. Bureau of Mines (1961). (Thermo; Compilation)

  • 61Moh: G.P. Mohanty and L.V. Azaroff, “Electron Density Distribution in ZnO Crystals,”J. Chem. Phys., 35(4), 1268–1270 (1961). (Equi Diagram, Crys Structure; Experimental)

    ADS  Google Scholar 

  • 62Bat: C.H. Bates, W.B. White, and R. Roy, “New High-Pressure Polymorph of Zinc Oxide,”Science, 137, 993 (1962). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 62Pil: T.C.M. Pillay, “Vaporization of Zinc Oxide,”J. Electrochem. Soc., 109(3), 76C (1962). (Equi Diagram; Experimental)

    Google Scholar 

  • 62Rop: R.C. Ropp and M.A. Aia, “Thermal Analysis of Phosphor Raw Materials,”Anal. Chem., 34(10), 1288–1291 (1962). (Equi Diagram; Experimental)

    Google Scholar 

  • 62Van: N.-G. Vannerberg, “Peroxides, Superoxides, and Ozonides of the Metals of Groups Ia, IIa, and IIb,”Prog. Inorg. Chem., 4, 125–197 (1962). (Crys Structure; Review)

    Google Scholar 

  • 63Ant: D.F. Anthrop, “Vaporization and Thermodynamic Properties of Zinc Oxide,” U.S. Atomic Energy Comm. UCRL-10708 (1963). (Thermo; Experimental)

  • 63Mar: A.N. Mariano and R.E. Hanneman, “Crystallographic Polarity of ZnO Crystals,”J. Appl. Phys., 34(2), 384–388 (1963). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 63Sir: D.B. Sirdeshmuk, unpublished Ph. D. thesis, Osmania University (1963); cited by [68Kha]. (Crys Structure; Experimental)

  • 63Wil: D.E. Wilcox and L.A. Bromley, “Computer Estimation of Heat and Free Energy of Formation for Simple Inorganic Compounds,”Ind. Eng. Chem., 55(7), 32–39 (1963). (Thermo; Theory)

    Google Scholar 

  • 64Ant: D.F. Anthrop and A.W. Searcy, “Sublimation and Thermodynamic Properties of Zinc Oxide,”J. Phys. Chem., 68(8), 2335–2342 (1964). (Thermo; Experimental)

    Google Scholar 

  • 64Cim: A. Cimino, G. Mazzone, and P. Porta, “A Lattice Parameter Study of Defective Zinc Oxide. I. Zinc Excess and Distortions in Pure ZnO,”Z. Phys. Chem. Neue Folge, 41, 154–172 (1964). (Equi Diagram, Crys Structure; Experimental)

    Google Scholar 

  • 64Hir: W. Hirschwald, F. Stolze, and I.N. Stranski, “Vaporization and Thermal Dissociation of Zinc Oxide,”Z. Phys. Chem. Neue Folge, 42, 96–111 (1964). (Thermo; Experimental)

    Google Scholar 

  • 64Hoe: C.L. Hoenig, “Vapor Pressure and Evaporation Coefficient Studies of Stannic Oxide, Zinc Oxide, and Beryllium Nitride,” U.S. Atomic Energy Comm. UCRL-7521 (1964). (Thermo; Experimental)

  • 64Kon: Yu.D. Kondrashev and Yu.A. Omel'chenko, “X-Ray Diffraction Examination of Some Oxide and Sulphide Systems,”Zh. Neorg. Khim., 9(4), 937–943 (1964) in Russian; TR:Russ. J. Inorg. Chem., 9(4), 512–516 (1964). (Crys Structure; Experimental)

    Google Scholar 

  • 65Kod: K. Kodera, S. Shimizu, and I. Kusunoki, “Dissociation of Zinc Oxide,”Nippon Kagaku Zasshi, 86(8), 814–817 (1965) in Japanese;Chem. Abst., 64, 16662 (1966). (Thermo; Experimental)

    Google Scholar 

  • 66Cla: W. Class, A. Iannucci, and H. Nesor, “Some Innovations and Observations on High Pressure Diffractometry,”Norelco Reporter, 13, 87–89 and 94 (1966). (Crys Structure; Experimental)

    Google Scholar 

  • 66Vol: I.I. Vol'nov,Peroxides, Superoxides, and Ozonides of Alkali and Alkaline Earth Metals, Nauka, Moscow (1964) in Russian; TR: Plenum Press, New York (1966). (Equi Diagram, Thermo; Review)

    Google Scholar 

  • 68Bra: V. Bratanov and K. Kunchev, “Zinc Oxide Vapor Pressure Measurement at High Temperature,”Rudodobiv Met., 23(3), 38–41 (1968). (Thermo; Experimental)

    Google Scholar 

  • 68Kha: A.A. Khan, “X-Ray Determination of Thermal Expansion of Zinc Oxide,”Acta Crystallogr. A, 24, 403 (1968). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 68Kod: K. Kodera, I. Kusunoki, and S. Shimizu, “Dissociation Pressures of Various Metallic Oxides,”Bull. Chem. Soc. Jpn., 41, 1035–1045 (1968). (Thermo; Experimental)

    Google Scholar 

  • 69Abr: S.C. Abrahams and J.L. Bernstein, “Remeasurement of the Structure of Hexagonal ZnO,”Acta Crystallogr. B, 25, 1233–1236 (1969). (Crys Structure; Experimental)

    Google Scholar 

  • 69Iba: H. Ibach, “thermal Expansion of Silicon and Zinc Oxide(II),”Phys. Status Solidi, 33, 257–265 (1969). (Crys Structure; Experimental)

    Google Scholar 

  • 69Kaz: E.K. Kazenas, D.M. Chizhikov, and Yu.V. Tsvetkov, “Thermodynamics of the Sublimation and Dissociation of Zinc Oxide,”Izv. Akad. Nauk SSSR, Metally, (1), 150–153 (1969) in Russian; TR:Russ. Metall., (1), 65–67 (1969). (Thermo; Experimental)

    Google Scholar 

  • 69Rad: O.E. Radczewski and R.F. Schicht, “Determination of the Lattice Constants of Cubic Zinc Monoxide,”Naturwissenschaften, 56(10), 514 (1968). (Crys Structure, Meta Phases; Experimental)

    ADS  Google Scholar 

  • 69Wil: T.C. Wilder, “The Free Energy of Formation of ZnO(s) for the Temperature Range 420 to 908°C,”Trans. Met. Soc. AIME, 245, 1370–1372 (1969). (Thermo; Experimental)

    Google Scholar 

  • 70Ree: R.R. Reeber, “Lattice Parameters of ZnO from 4.2 to 296 K,”J. Appl. Phys., 41(13), 5063–5066 (1970). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 71Gra: T.J. Gray, “Zinc Oxide,” inHigh Temperature Oxides. Part IV. Refractory Glasses, Glass-Ceramics, and Ceramics, Chapt. 6, A.M. Alper, Ed., Academic Press, New York (1971). (Crys Structure; Review)

    Google Scholar 

  • 71Iye: R.D. Iyengar and V.V.S. Rao, “Electron Spin Resonance Studies on Zinc Peroxide and on Zinc Oxide Obtained from a Decomposition of Zinc Peroxide,”J. Phys. Chem., 75(20), 3089–3092 (1971). (Equi Diagram; Experimental)

    Google Scholar 

  • 71Nav: A. Navrotsky and A. Muan, “Activity-Composition Relations in the Systems CoO−ZnO and NiO−ZnO at 1050°C,”J. Inorg. Nucl. Chem., 33, 35–47 (1971). (Crys Structure; Experimental)

    Google Scholar 

  • 72App: B.R. Appleton and L.C. Feldman, “Investigations of Interstitial Zn Concentrations in Additively Colored ZnO Using the Uni-Directional Channeling and Blocking Technique,”J. Phys. Chem. Solids, 33, 507–517 (1972). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 72Der: J. Deren, J. Nedoma, and J. Nowok, “Structure Modification of ZnO,”Z. Kristallogr., 136, 315–318 (1972) in German. (Crys Structure, Meta Phases; Experimental)

    Google Scholar 

  • 72Mil: K.C. Mills, “The Heat Capacities of Ga2O3(c), Tl2O3(c), ZnO(c), and CdO(c),”High Temp.-High Press., 4, 371–377 (1972). (Thermo; Experimental)

    Google Scholar 

  • 73Bol: E.V. Bol'shun and I.A. Myasnikov, “Evaporation of Metal Atoms in Excess of Stoichiometry from Metal Oxide Surfaces,”Zh. Fiz. Khim., 47(4), 878–882 (1973) in Russian; TR:Russ. J. Phys. Chem., 47 (4), 497–499 (1973). (Thermo; Experimental)

    Google Scholar 

  • 73Now: J. Nowok and W. Żdanowicz, “Microscopic Study of Extended Defects Related to Non Stechiometry (sic) in Zinc Oxide Single Crystals,”Acta Phys. Polon A, 44(4), 519–530 (1973). (Crys Structure, Meta Phases; Experimental)

    Google Scholar 

  • 74Dem: M. Demianiuk, J. Żmija, C. Matyja, J. Pelizsek, and J. Janko, “Measurement of the Lattice Parameters of ‘Pure’ and ‘Doped’ Zinc Oxide Crystals,”Kristallografiya, 19(2), 388–390 (1974) in Russian; TR:Sov. Phys. Crystallogr., 19(2), 238–239 (1974). (Crys Structure; Experimental)

    Google Scholar 

  • 74Now: J. Nowok, “The Defective Structure and Ferroelectric Properties of ZnO Single Crystals,”Acta Phys. Polon. A, 46(5), 559–564 (1974). (Crys Structure, Meta Phases; Experimental)

    Google Scholar 

  • 75Hag1: K.I. Hagemark and P.E. Toren, “Determination of Excess Zn in ZnO. Phase Boundary Zn−Zn1+xO,”J. Electrochem. Soc., 122(7), 992–994 (1975). (Equi Diagram; Experimental)

    Google Scholar 

  • 75Hag2: K.I. Hagemark and L.C. Chacka, “Electrical Transport Properties of Zn Doped ZnO,”J. Solid State Chem., 15, 261–270 (1975). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 75Now1: J. Nowok, “Electron Microscope Observation of Phase Transformations in Crystalline Zinc Oxide. I. Possibility of Zinc Oxide Crystallization in the Cubic System,”Zesz. Nauk Politech. `Slask. Hutn., 5, 203–220 (1975) in Polish. (Crys Structure, Meta Phases; Experimental)

    Google Scholar 

  • 75Now2: J. Nowok, “Electron Microscope Observation of Phase Transformations in Crystalline Zinc Oxide. II. Effect of Ordering in the Oxygen and Zinc Sublattices on the Formation of a Metastable Phase in Crystalline Zinc Oxide,”Zesz. Nauk Politech. `Slask. Hutn., 5, 221–226 (1975) in Polish. (Crys Structure, Meta Phases; Experimental)

    Google Scholar 

  • 76Cho: J.S. Choi and C.H. Yo, “Study of the Nonstoichiometric Composition of Zinc Oxide,”J. Phys. Chem. Solids, 37, 1149–1151 (1976). (Equi Diagram, Thermo; Experimental)

    ADS  Google Scholar 

  • 76Gra: M. Grade, W. Hirschwald, and F. Stolze, “Detection and Stability of ZnO-Molecules in the Gas Phase,”Z. Phys. Chem. Neue Folge, 100, 165–174 (1976) in German. (Thermo; Experimental)

    Google Scholar 

  • 76Hag: K.I. Hagemark, “Defect Structure of Zn-Doped ZnO,”J. Solid State Chem., 16, 293–299 (1976). (Equi Diagram, Crys Structure, Thermo; Theory)

    ADS  Google Scholar 

  • 76Jac: K.T. Jacob, “Gibbs Free Energies of Formation of ZnAl2O4 and ZnCr2O4,”Thermochim. Acta, 15, 79–87 (1976). (Meta Phases, Thermo; Experimental)

    Google Scholar 

  • 76Now: J. Nowok, “Electron Microscopic Study of Zinc Oxide Crystals Microstructure Crystallizing in a Double Hexagonal Close-Packed Lattice,”Kristallogr. Tech., 11(9), 947–953 (1976). (Meta Phases, Crys Structure; Experimental)

    Google Scholar 

  • 78Cox: J.D. Cox, “CODATA Recommended Key Values for Thermodynamics, 1977. Report of the CODATA Task Group on Key Values of Thermodynamics, 1977,”J. Chem. Thermodynam., 10, 903–906 (1978). (Thermo; Compilation)

    Google Scholar 

  • 78Yu: S.C. Yu, I.L. Spain, and E.F. Skelton, “High Pressure Phase Transitions in Tetrahedrally Coordinated Semiconducting Compounds,”Solid State Commun., 25, 49–52 (1978). (Pressure; Experimental)

    ADS  Google Scholar 

  • 79Kje: A. Kjekshus and T. Rakke, “Preparations and Properties of Magnesium, Copper, Zinc and Cadmium Dichalcogenides,”Acta Chem. Scand. A, 33, 617–620 (1979). (Crys Structure; Experimental)

    Google Scholar 

  • 79Sch: H. Schulz and K.H. Thiemann, “Structure Parameters and Polarity of the Wurtzite Type Compounds SiC−2H and ZnO,”Solid State Commun., 32, 783–785 (1979). (Crys Structure; Experimental)

    ADS  Google Scholar 

  • 80Gra: M. Grade and W. Hirschwald, “Equilibrium Gas Phase Composition of IIB/VIA Compounds and Identification of GaseousMeX(g) Molecules,”Z. Anorg. Chem., 460, 106–114 (1980). (Thermo; Experimental)

    Google Scholar 

  • 80Kuz: F.A. Kuznetsov, G.A. Kokovin, and N.A. Testova, “Thermodynamic Analysis of Factors Responsible for Composition Variation of Vapor-Deposited II–VI Compounds,” High Purity Mater. Sci. Technol., Proc. 5th Int. Symp.,1, Akad. Wiss. DDR, Zentralinst., Festkörperphys. Werkstofforschung, Dresden, 93–121 (1980). (Thermo; Theory)

    Google Scholar 

  • 80Pro: E.S. Prochaska and L. Andrews, “Infrared, Raman, and Visible Spectroscopic Studies of Zn and Cd Matrix Reactions with Ozone. Spectra of Metal Ozonides and Oxides in Solid Argon and Nitrogen,”J. Chem. Phys., 72(12), 6782–6793 (1980). (Meta Phases; Experimental)

    ADS  Google Scholar 

  • 81Neu1: G. Neumann, “Non-Stoichiometry and Defect Structure,”Current Topics in Materials Science, Vol. 7, E. Kalis, Ed., North-Holland Publishing Co., 154–168 (1981). (Crys Structure; Review)

  • 81Neu2: G. Neumann, “The Quantitative Determination of Excess Zinc,”Current Topics in Materials Science, Vol. 7, E. Kalis, Ed., North-Holland Publishing Co., 199–211 (1981). (Equi Diagram, Thermo; Review)

  • 81Ots: S. Otsuka and Z. Kozuka, “Thermodynamic Study of Oxygen in Liquid Elements of Group Ib to VIb,”Trans. Jpn. Inst. Met., 22(8), 558–566 (1981). (Thermo; Experimental)

    Google Scholar 

  • 81Zie: E. Ziegler, A. Heinrich, H. Oppermann, and G. Stöver, “Electrical Properties and Non-Stoichiometry in ZnO Single Crystals,”Phys. Status Solidi (a), 66, 635–648 (1981). (Equi Diagram; Experimental)

    ADS  Google Scholar 

  • 82Kat: I. Katayama, A. Keeda, N. Kemori, and Z. Kozuka, “Measurements of Standard Gibbs Energies of Formation of ZnO and ZnGa2O4 by emf Method,”Trans. Jpn. Inst. Met., 23(9), 556–562 (1982). (Thermo; Experimental)

    Google Scholar 

  • 82Kha: G.M. Khan and M.S. Subhani, “Standard Free Energy of Formation of ZnO,”Z. Phys. Chem. (Leipzig), 263(5),1034–1038 (1982). (Thermo; Experimental)

    Google Scholar 

  • 82Pan: L.B. Pankratz, “Thermodynamic Properties of Elements and Oxides,” Bulletin 672, U.S. Bureau of Mines (1982). (Thermo; Compilation)

  • 82Wag: D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall, “The NBS Tables of Thermodynamic Properties,”J. Phys. Chem. Ref. Data, 11(Suppl. 2), 2–138 (1982). (Thermo; Compilation)

    Google Scholar 

  • 84Kaz: E.K. Kazenas, G.N. Zviadadze, and M.A. Bol'shikh, “Mass-Spectrometric Study of the Dissociation and Vaporization Thermodynamics of Cadmium and Zinc Oxides,”Izv. Akad. Nauk SSSR, Metally, (2), 67–70 (1984) in Russian; TR:Russ. Metall., (2), 58–61 (1984). (Thermo; Experimental)

    Google Scholar 

  • 84Pan: L.B. Pankratz, J.M. Stuve, and N.A. Gokcen, “Thermodynamic Data for Mineral Technology,” Bulletin 677, U.S. Bureau of Mines (1984). (Thermo; Compilation)

  • 84Tes: K. Teske, H. Oppermann, and G. Stöver, “On the Determination of the Phase Breadth of Zinc Oxide,”Z. Anorg. Chem., 511, 72–76 (1984) in German. (Equi Diagram; Experimental)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work was supported by ASM International. Literature searched through 1984. Part of the literature search was provided by ASM International. Dr. Wriedt is the ASM/NBS Data Program Category Editor for binary oxygen alloys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wriedt, H.A. The O−Zn (Oxygen-Zinc) system. JPE 8, 166–176 (1987). https://doi.org/10.1007/BF02873202

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02873202

Keywords

Navigation