Skip to main content
Log in

The migration of solutes

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

Introduction and Section A

  1. Clements, H. F. The upward movement of inorganic solutes in plants. Research Studies, State Coll. Wash.2: 91–106. 1930.

    Google Scholar 

  2. Curtis, O. F. The effect of ringing a stem on the upward transfer of nitrogen and ash constituents. Amer. Jour. Bot.10: 361–382. 1923.

    Article  CAS  Google Scholar 

  3. —. The effect on the upward transfer of solutes of cutting the xylem as compared with that of cutting the phloem. Ann. Bot.39: 573–585. 1925

    CAS  Google Scholar 

  4. -. Translocation in plants. pp. 61–62. 1935.

  5. Hales, S. Vegetable statics or an account of some statical experiments on the sap in vegetables. 1727.

  6. Loomis, W. E. Translocation and growth balance in woody plants. Ann. Bot.49: 247–272. 1935.

    CAS  Google Scholar 

  7. Maskell, E. J., andMason, T. G. Preliminary observations on the downward transport of nitrogen in the stem. Ann. Bot.43: 205–231. 1929.

    Google Scholar 

  8. Maskell, E. J., Phillis, E., andMason, T. G. Preliminary observations on the transport of sulphur, magnesium and chlorine. Ann. Bot. In press.

  9. Mason, T. G., andMaskell, E. J. Preliminary observations on the transport of phosphorus, potassium, and calcium. Ann. Bot.45: 125–173. 1931.

    CAS  Google Scholar 

  10. ——, andPhillis, E. Concerning the independence of solute movement in the phloem. Ann. Bot.50: 23–58. 1936.

    CAS  Google Scholar 

  11. —, andPhillis, E. A tentative account of the movement of food materials during the development of the cotton plant. Empire Cotton Growing Review11: 121–124. 1934.

    Google Scholar 

  12. Steward, F. C. Transport of nitrogen in the plant. Nature126: 973–974. 1930.

    Article  Google Scholar 

Section B

  1. Birch-Hirschfeld, L. Untersuchungen über die Ausbreitungsgeschwindigkeit gelöster Stoffe in der Pflanze. Jahrb. Wiss. Bot.59: 171–262. 1919–20.

    Google Scholar 

  2. Bosworth, R. C. L. The mobility of potassium on tungsten. Proc. Roy. Soc.,154: 112–123. 1936.

    Article  CAS  Google Scholar 

  3. Clements, H. F. Translocation of solutes in plants. Northwest Science8: 9–21. 1934.

    Google Scholar 

  4. Crafts, A. S. Movement of organic materials in plants. Plant Physiol.6: 1–41. 1931.

    PubMed  CAS  Google Scholar 

  5. —. Phloem anatomy, exudation, and transport of organic nutrients in cucurbits. Plant Physiol.7: 183–225. 1932.

    Google Scholar 

  6. —. Sieve-tube structure and translocation in the potato. Plant Physiol.8: 81–104. 1933.

    PubMed  CAS  Google Scholar 

  7. —. Further studies on exudation in cucurbits. Plant Physiol.11: 63–79. 1936.

    Article  PubMed  CAS  Google Scholar 

  8. Curtis, O. F. Studies on solute translocation in plants. Experiments indicating that translocation is dependent on the activity of living cells. Amer. Jour. Bot.16: 154–168. 1929.

    Article  CAS  Google Scholar 

  9. —, andScofield, H. T. A comparison of osmotic concentrations of supplying and receiving tissues and its bearing on the Münch hypothesis of the translocation mechanism. Amer. Jour. Bot.20: 502–512. 1933.

    Article  Google Scholar 

  10. Czapek, F. Über die Leitungswege der organischen Baustoffe im Pflanzenkörper. Sitzber. Kais. Akad. Wiss. Wien.106: Abt. 1, 117–170. 1897.

    Google Scholar 

  11. —. Zur Physiologie des Leptoms der Angiospermen. Ber. Deut. Bot. Ges.15: 124–131. 1897.

    Google Scholar 

  12. De Vries, H. Ueber die Bedeutung der Circulation und der Rotation des Protoplasma für den Stofftransport in der Pflanze. Bot. Zeit.43: 1–6, 17–26. 1885.

    Google Scholar 

  13. Dixon, H. H. Transport of organic substances in plants. Pres. Address, Sec. K, Brit. Assoc. Adv. Sci. 1922.

  14. —, andBall, N. G. Transport of organic substances in plants. Nature109: 236–237. 1922.

    Article  Google Scholar 

  15. Döring, H. Versuche über die Aufnahme fluoreszierender Stoffe in lebenden Pflanzenzellen. Ber. Deut. Bot. Ges.53: 415–437. 1935.

    Google Scholar 

  16. Hales, S. Vegetable statics or an account of some statical experiments on the sap in vegetables. 1727.

  17. Hanstein, J. Versuche über die Leitung des Saftes durch die Rinde und Folgerungen daraus. Jahrb. Wiss. Bot.2: 392–467. 1860.

    Google Scholar 

  18. Hartig, Th. Vergleichende Untersuchungen über die Organisation des Stammes der einheimischen Waldbäume. Jahrb. über die Fortsch. der Forstwissensch. 1837.

  19. —. Ueber den Herbstsaft der Holzpflanzen. Bot. Zeit.16: 369–370. 1858.

    Google Scholar 

  20. —. Ueber die Bewegung des Saftes in den Holzpflanzen. Bot. Zeit.19: 17–23. 1861.

    Google Scholar 

  21. Hill, A. W. The histology of the sieve-tubes of angiosperms. Ann. Bot.22: 245–290. 1908.

    Google Scholar 

  22. Huber, B. Beobachtung und Messung pflanzlicher Saftströme. Ber. Deut. Bot. Ges.1: 89–109. 1932.

    Google Scholar 

  23. —. General discussion on translocation of plastic materials. Zesde Int. Bot. Cong.1: 312. 1936.

    Google Scholar 

  24. James, W. O., andBaker, H. Sap pressure and the movements of sap. New Phyt.32: 317–343. 1933.

    Article  Google Scholar 

  25. Kastens, E. Beiträge zur Kenntnis der Funktion der Siebröhren. Mitt. Inst. Allg. Bot. Hamburg6: 33–70. 1924.

    Google Scholar 

  26. Kidd, F. Translocation in plant tissues. New Phyt.17: 44–45. 1918.

    Article  Google Scholar 

  27. Kraus, G. Über den Siebröhreninhalt vonCucurbita. Sitzungsber. Naturf. Ges., Halle 9. 1884.

  28. Kuhla, F. Die Plasmaverbindungen beiViscum album. Bot. Zeit.58: 29–58. 1900.

    Google Scholar 

  29. Mangham, S. On the mechanism of translocation in plant tissues. An hypothesis with special reference to sugar conduction in sieve-tubes. Ann. Bot.31: 293–311. 1917.

    CAS  Google Scholar 

  30. —. Transport of organic substances in plants. Nature109: 476–477. 1922.

    Article  CAS  Google Scholar 

  31. Maskell, E. J., andMason, T. G. Preliminary observations on the downward transport of nitrogen in the stem. Ann. Bot.43: 205–231. 1929.

    Google Scholar 

  32. ——. Observations on concentration gradients. Ann. Bot.43: 615–652. 1929.

    CAS  Google Scholar 

  33. ——. The relation between longitudinal movement and concentration gradients in the bark. Ann. Bot.44: 1–29. 1930.

    CAS  Google Scholar 

  34. ——. The interpretation of the effects of ringing, with special reference to the lability of the nitrogen compounds of the bark. Ann. Bot.44: 233–267. 1930.

    CAS  Google Scholar 

  35. ——. Movement to the boll. Ann. Bot.44: 657–688. 1930.

    CAS  Google Scholar 

  36. -,Phillis. E., andMason, T. G. Preliminary observations on the transport of sulphur, magnesium and chlorine. Ann. Bot. In press.

  37. Mason, T. G. A note on growth and the transport of organic substances in bitter cassava (Manihot utilissima). Sci. Proc. Roy. Dubl. Soc.17: 105–112. 1922.

    CAS  Google Scholar 

  38. —. Preliminary note on the physiological aspect of certain undescribed structures in the phloem of the greater yam,Dioscorea alata L. Sci. Proc. Roy. Dubl. Soc.18: 195–198. 1926.

    Google Scholar 

  39. —, andLewin, C. T. On the rate of carbohydrate transport in the greater yam,Dioscorea alata L. Sci. Proc. Roy. Dubl. Soc.18: 203–205. 1926.

    Google Scholar 

  40. —, andMaskell, E. J. A study of diurnal variation in the carbohydrates of leaf, bark and wood, and of the effects of ringing. Ann. Bot.42: 1–65. 1928.

    Google Scholar 

  41. ——. The factors determining the rate and the direction of movement of sugars. Ann. Bot.42: 571–636. 1928.

    CAS  Google Scholar 

  42. ——. Preliminary observations on the transport of phosphorus, potassium and calcium. Ann. Bot.45: 125–173. 1931. 4ba]

    CAS  Google Scholar 

  43. ——. An ontogenetic study of concentrations and vertical gradients. Ann. Bot.48: 119–141. 1934.

    CAS  Google Scholar 

  44. ——, andPhillis, E. Concerning the independence of solute movement in the phloem. Ann. Bot.50: 23–58. 1936.

    CAS  Google Scholar 

  45. —, andPhillis, E. Concerning storage in the bark. Ann. Bot.48: 315–333. 1934.

    CAS  Google Scholar 

  46. ——. On the simultaneous movement of solutes in opposite directions through the phloem. Ann. Bot.50: 162–174. 1936.

    Google Scholar 

  47. ——. Oxygen supply and the activation of diffusion. Ann. Bot.50: 455–499. 1936.

    CAS  Google Scholar 

  48. ——. The concentration of solutes in sap and tissue, and the estimation of bound water. Ann. Bot.50: 437–454. 1936.

    CAS  Google Scholar 

  49. Münch, E. Dynamik der Saftströmungen. Ber. Deut. Bot. Ges.44: 68–71. 1926.

    Google Scholar 

  50. —. Versuche über den Saftkreislauf. Ber. Deut. Bot. Ges.45: 340–356. 1927.

    Google Scholar 

  51. -. Die Stoffbewegungen in der Pflanze. 1930.

  52. Nägeli, C. Ueber die Siebröhren vonCucurbita. Sitzber. Bayr. Akad. Wiss. München1: 212–238. 1861.

    Google Scholar 

  53. Phillis, E., andMason, T. G. The polar distribution of sugar in the foliage leaf. Ann. Bot.47: 585–634. 1933.

    CAS  Google Scholar 

  54. Pfeffer, G. Quoted fromBlackman, V. H. “Osmotic pressure, root pressure and exudation.” New Phyt.20: 106–115. 1921.

    Article  Google Scholar 

  55. Quanjer, H. M. Quoted from “Recent advances in the study of plant viruses.” Smith, K. M. p. 40. 1933.

  56. Ruhland, W. Untersuchungen über den Kohlenhydratstoffwechsel vonBeta vulgaris (Zuckerrübe). Jahrb. Wiss. Bot.50: 200–257. 1912.

    Google Scholar 

  57. Sachs, J. Mikrochemische Untersuchungen. Flora45: 289–301, 313–320, 326–336. 1862.

    Google Scholar 

  58. — Ueber die Leitung der plastischen Stoffe durch verschiedene Gewebeformen. Flora46: 33–42, 49–58, 65–74. 1863.

    Google Scholar 

  59. -. A history of botany. p. 365. 1890.

  60. Schmidt, E. W. Bau und Funktion der Siebröhre der Angiospermen. 1917.

  61. Schneider-Orelli, O. Die miniergänge vonLyonetia ckrkella und die Stoffwanderung in Apfelblättern. Zentralbl. Bakt.2: Ab. XXIV, 158–181. 1909.

    Google Scholar 

  62. Schumacher, W. Untersuchungen über die Lokalisation der Stoffwanderung in den Leitbündeln höherer Pflanzen. Jahrb. Wiss. Bot.73: 770–823. 1930.

    CAS  Google Scholar 

  63. —. Untersuchungen über die Wanderung des Fluoreszeïns in den Siebröhren. Jahrb. Wiss. Bot.77: 685–732. 1933.

    Google Scholar 

  64. Steward, F. C., andPriestley, J. H. Movement of organic materials in plants. A note on a recently suggested mechanism. Plant Physiol.7: 165–171. 1932.

    PubMed  CAS  Google Scholar 

  65. Strasburger, E. Ueber den Bau und die Verrichtungen der Leitungsbahnen in den Pflanzen. Histologische Beiträge 3. 1891.

  66. Van den Honert, T. H. On the mechanism of transport of organic materials in plants. Proc. Kon. Akad. Wetensch. Amsterdam35: 1104–1111. 1932.

    Google Scholar 

  67. Volmer, M. The migration of absorbed molecules on surfaces of solids. Trans. Far. Soc.28: 359–363. 1932.

    Article  CAS  Google Scholar 

  68. Weevers, Th., andWestenberg, J. Versuche zur Prüfung der Münchschen Theorie der Stoffbewegungen in der Pflanze. Proc. Kon. Akad. Wetensch. Amsterdam34: 1173–1178. 1931.

    Google Scholar 

Section C

  1. Curtis, O. F. Translocation in plants. pp. 197–198. 1935.

  2. Loomis, W. E. The translocation of carbohydrates in maize. Symposia Commemorating Six Decades of the Modern Era in Botanical Science1: No. 3, 295–306. 1935.

    Google Scholar 

  3. Maskell, E. J., andMason, T. G. Preliminary observations on the downward transport of nitrogen in the stem. Ann. Bot.43: 205–231. 1929.

    Google Scholar 

  4. ——. Observations on concentration gradients. Ann. Bot.43: 615–652. 1929.

    CAS  Google Scholar 

  5. ——. The relation between longitudinal movement and concentration gradients in the bark. Ann. Bot.44: 1–29. 1930.

    CAS  Google Scholar 

  6. ——. The interpretation of the effects of ringing, with special reference to the lability of the nitrogen compounds of the bark. Ann. Bot.44: 233–267. 1930.

    CAS  Google Scholar 

  7. ——. Movement to the boll. Ann. Bot.44: 657–688. 1930.

    CAS  Google Scholar 

  8. Mason, T. G., andMaskell, E. J. A study of diurnal variations in the carbohydrates of leaf, bark and wood, and of the effects of ringing. Ann. Bot.42: 1–65. 1928.

    Google Scholar 

  9. ——. The factors determining the rate and the direction of movement of sugars. Ann. Bot.42: 571–636. 1928.

    CAS  Google Scholar 

  10. Phillis, E., andMason, T. G. The polar distribution of sugar in the foliage leaf. Ann. Bot.47: 585–634. 1933.

    CAS  Google Scholar 

  11. -, -. Interchange between the tissues of the corolla. Ann. Bot. 50. 1936.

  12. Steward, F. C. The absorption and accumulation of solutes by living plant cells. V. Observations upon the effects of time, oxygen and salt concentration upon absorption and respiration by storage tissue. Protoplasma18: 208–242. 1933.

    Article  CAS  Google Scholar 

  13. —. Mineral nutrition of plants. Ann. Rev. Biochem.4: 527–537. 1935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, T.G., Phillis, E. The migration of solutes. Bot. Rev 3, 47–71 (1937). https://doi.org/10.1007/BF02872295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02872295

Keywords

Navigation