Skip to main content
Log in

Photovoltaic performance of injection solar cells and other applications of nanocrystalline oxide layers

  • Photochemical Conversion And Storage Of Solar Energy
  • Published:
Proceedings / Indian Academy of Sciences Aims and scope Submit manuscript

Abstract

The direct conversion of sunlight to electricity via photoelectrochemical solar cells is an attractive option that has been pursued for nearly two decades in several laboratories. In this paper, we review the principles and performance features of very efficient solar cells that are being developed in our laboratories. These are based on the concept of dye-sensitization of wide bandgap semiconductors used in the form of mesoporous nanocrystalline membrane-type films. The key feature is charge injection from the excited state of an anchored dye to the conduction band of an oxide semiconductor such as TiO2. In the use of the semiconductor in the form of high surface area, highly porous film offers several unique advantages: monomeric distribution of a large quantity of the dye in a compact (few micron thick) film, efficient charge collection and drastic inhibition of charge recombination (‘capture of charge carriers by oxidized dye’). Near quantitative efficiency for charge collection for monochromatic light excitation gives rise to sunlight conversion efficiency in the range of 8–10% This has led to fruitful collaboration with several industrial partners. Possible applications and commercialization of these solar cells and also other practical applications of nanosized films are briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calzaferri G 1995 Proceedings of the 10th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-10) of Interlaken,Solar Energy Mater. Solar Cells, vol. 38 and Proceedings of earlier conferences of this series cited therein.

  2. Grätzel M (ed.) 1983Energy Resources Through Photochemistry and Catalysis, Academic Press, New York

    Google Scholar 

  3. Schiavello M 1984Photoelectrochemistry, Photocatalysis and Photoreactors, NATO Adv. Study Inst. Series C, vol. 146, Reidel, Dordrecht, The Netherlands

    Google Scholar 

  4. Serpone N and Pelizetti E 1989Photocatalysis: Fundamentals and Applications, J. Wiley, New York

    Google Scholar 

  5. Bard A J, Fox M A 1995Acc. Chem. Res. 28, 141;

    Article  CAS  Google Scholar 

  6. Lewis N S 1990Acc. Chem. Res.,23 176;

    Article  CAS  Google Scholar 

  7. Kalyanasundaram K 1985Solar Cells,15 93

    Article  CAS  Google Scholar 

  8. Brinker C J and Scherer C W 1990Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego

    Google Scholar 

  9. Klein L C 1994Sol-Gel Optics-Processing and Applications, Kluwer, Boston

    Google Scholar 

  10. Klein L C (ed.) 1988Sol-Gel Technology for Thin Films, Fibres, Preforms, Electronics and Speciality Shapes, Noyes, New Jersey

    Google Scholar 

  11. Matijevic E 1989Mater. Res. Soc. Bull.,4 18;

    Article  Google Scholar 

  12. Matijevic E 1990Mater. Res. Soc. Bull. 5 16;

    Article  Google Scholar 

  13. Mehrotra R 1992Struc. Bonding 77 1

    Article  CAS  Google Scholar 

  14. Gesser H D and Goswami P C 1989Chem. Rev.,89 765;

    Article  CAS  Google Scholar 

  15. Matijevic E 1994Langmuir,10 8; 1986ibid. 2 12

    Article  CAS  Google Scholar 

  16. Matijevic E 1993Chem. Mater. 5 412; 1985Ann. Rev. Mater. Sci.,15 485

    Article  CAS  Google Scholar 

  17. Kamat P V and Meisel D (eds) 1997Semiconductor Nanoclusters-Physical, Chemical and Catalytic Aspects, Studies in Surface Science and Catalysis series vol. 103, Elsevier, Amsterdam

    Google Scholar 

  18. Fendler J H 1994Membrane Mimetic Approach to Advanced Materials, Adv. Polym. Sci,113, Springer-Verlag, Berlin

    Book  Google Scholar 

  19. Pelizzetti E 1996Fine Particles Science and Technology: From Micro to Nanoparticles, Kluwer, Dordrecht

    Book  Google Scholar 

  20. Gerfin T, Grätzel T M and Walder L 1996Progr. Inorg. Chem.,44 346

    Google Scholar 

  21. Hagfeldt A and Grätzel M 1995Chem. Rev.,95 45

    Article  Google Scholar 

  22. Pechy P, Rotzinger F P, Nazeeruddin Md. K, Köhle O, Zakeeruddin S M, Humphry-Baker R and Grätzel M 1995J. Chem. Soc., Chem. Commun., 65

  23. Nazeeruddin Md. K, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N and Grätzel M 1993J. Am. Chem. Soc.,115 6382

    Article  CAS  Google Scholar 

  24. O’Regan B and Grätzel M 1991Nature (London) 335 737

    Article  Google Scholar 

  25. Nazeeruddin Md. K, Liska P, Moser J, Vlachopoulos N and Grätzel M 1990Helv. Chim. Acta 73 1788

    Article  CAS  Google Scholar 

  26. Vlachopoulos N, Liska P, Augustynski J and Grätzel M 1988J. Am. Chem. Soc.,110 1216

    Article  CAS  Google Scholar 

  27. Liska P, Vlachopoulos N, Nazeeruddin Md. K, Comte P and Grätzel M 1988J. Am. Chem. Soc.,110 3686

    Article  CAS  Google Scholar 

  28. DeSilvestro J, Grätzel M, Kavan L, Moser J and Augustynski J 1985J. Am. Chem. Soc.,107 2988

    Article  CAS  Google Scholar 

  29. Amadelli R, Argazzi R, Bignozzi C A and Scandola F, 1990J. Am. Chem. Soc.,112 7099

    Article  CAS  Google Scholar 

  30. Heimer T A, Bignozzi C A and Meyer G J 1993J. Phys. Chem.,97 11987;

    Article  CAS  Google Scholar 

  31. Argazzi R, Bignozzi C A, Heimer T A, Castellano F N and Meyer G J 1994Inorg. Chem.,33 5741;

    Article  CAS  Google Scholar 

  32. Bignozzi C A, Argazzi R, Schoonover J R, Meyer G J and Scandola F 1995Solar Energy Mater. Sol. Cells.,38 187

    Article  CAS  Google Scholar 

  33. Murakoshi K, Kano G, Wada Y, Yanagida S, Miyazaki H, Matsumoto M and Murasawa S 1995J. Electroanal. Chem.,396 27

    Article  Google Scholar 

  34. Hagfeldt A, Lindquist S and Grätzel M 1993Sol. Energy Mater. Sol. Cells.,32 245

    Article  Google Scholar 

  35. Hagfeldt A, Didriksson B, Palmquist T, Lindström H, Sodergren S, Rensmo H and Lindquist S-E 1994Solar Energy Mater. Sol. Cells. 31 481

    Article  CAS  Google Scholar 

  36. Knödler R, Sopka J, Harbach F and Grünling H W 1993Sol. Energy Mater. Sol. Cells,30 277

    Article  Google Scholar 

  37. Smestad G, Bignozzi C A and Argazzi R 1994Sol. Energy Mater. Sol. Cells. 32 259; Smestad G, 1994ibid 32 273

    Article  CAS  Google Scholar 

  38. James T H (ed.) 1977Theory of Photographic Processes 4th edn, MacMillan Press, New York

    Google Scholar 

  39. Weigl J W 1977Angew. Chem. Internat. Edn.,16 374

    Article  Google Scholar 

  40. Willig F and Gerischer H 1976Top. Curr. Chem.,61 31

    Article  PubMed  Google Scholar 

  41. Memming R in 1992Photochemistry and Photophysics”, (ed.) J F Rabek CRC Press, Boca Raton, Florida

    Google Scholar 

  42. Parkinson B A and Spitler M T 1992Electrochim. Acta,37 943

    Article  CAS  Google Scholar 

  43. Fujishima A and Honda K 1972Nature (London) 238 37

    Article  CAS  PubMed  Google Scholar 

  44. Kalyanasundaram K 1992Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, New York

    Google Scholar 

  45. Roundhill M 1994 “Photophysics and Photochemistry of Coordination Compounds”, VCH Publishers, New York;

    Google Scholar 

  46. Sykora J and Sima J 1990 “Photochemistry of Coordination Compounds”, Elsevier, Amsterdam

    Book  Google Scholar 

  47. Juris A, Balzani V, Barigeletti F, Campagna S, Belzer P and Zelewski A V 1988Coord. Chem. Rev.,85 85

    Article  Google Scholar 

  48. Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds, Kalyanasundaram K and Grätzel M (eds), Catalysis by Metal Complexes Series, Kluwer Academic, Dordrecht, The Netherlands, 1993

    Google Scholar 

  49. Balzani V and Scandola F 1991Supramolecular Photochemistry, Harwood, Chicester, UK

    Google Scholar 

  50. Balzani V, Juris A, Venturi M, Campagna S and Serroni S 1996Chem. Rev.,96 759 and refs. cited therein.

    Article  CAS  PubMed  Google Scholar 

  51. Barbé C J, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V and Grätzel, 1996J. Am. Ceramic Soc., submitted

  52. Kay A 1994 “Solar Cells based on Dye-sensitized Nanocrystalline TiO2 electrodes”, Ph. D dissertation, Ecole Polytechnique Federale de Lausanne, # 1214

  53. Xu Q and Anderson M A 1977J. Am. Ceram. Soc.,77 1939

    Article  Google Scholar 

  54. Kavan L, Grätzel M, Rathousky J and Zukal A 1996J. Electrochem. Soc.,143 394

    Article  CAS  Google Scholar 

  55. Kavan L, Grätzel M, Gilbert S E, Klemenz G G and Scheel H J 1996J. Amer. Chem. Soc.,118 6716

    Article  CAS  Google Scholar 

  56. Kavan L and Grätzel M 1995Electrochim. Acta,40 643

    Article  CAS  Google Scholar 

  57. Kavan L, Kratochvilova K and Grätzel M 1995J. Electroanal. Chem.,394 93

    Article  Google Scholar 

  58. Kavan L, Kay A, O’Regan B and Grätzel M 1993J. Electroanal. Chem. 346 291

    Article  CAS  Google Scholar 

  59. Kavan L, Stoto T, Grätzel M, Fitzmaurice D and Shklover V 1993J. Phys. Chem.,97 9493

    Article  CAS  Google Scholar 

  60. O’Regan B, Moser J, Anderson M A and Grätzel M 1990J. Phys. Chem.,94 8720

    Article  Google Scholar 

  61. Moser J and Grätzel M 1983J. Am. Chem. Soc. 105 6542

    Article  Google Scholar 

  62. Fox M A and Channon M (eds.) 1988 ‘Photoinduced Electron Transfer’, Elsevier, Amsterdam

    Google Scholar 

  63. Zakeeruddin S M, Nazeeruddin Md. K, Pechy P, Rotzinger F P, Humphry-Baker R, Kalyanasundaram K, Grätzel M, Shklover V and Haibach T 1997Inorg. Chem., submitted

  64. Grätzel M and Kalyanasundaram K 1993 in “Photosensitization and Photocatalysis using Inorganic and Organometallic Compounds”, (eds) K Kalyanasundaram, M Grätzel Kluwer Academic, Dordrecht, Netherlands, p. 247–271

    Chapter  Google Scholar 

  65. Moser J, Punchihewa S, Infelta P P and Grätzel M 1991Langmuir,7 3012

    Article  CAS  Google Scholar 

  66. Houlding V and Grätzel M 1983J. Am. Chem. Soc.,105 5695

    Article  CAS  Google Scholar 

  67. Vrachnou E, Vlachopoulos N and Grätzel M 1987J. Chem. Soc., Chem. Commun., 868

  68. Frei H, Fitzmaurice D and Grätzel M 1990Langmuir,6 198

    Article  CAS  Google Scholar 

  69. O’Regan B B and Schwarz D T 1995Chem. Mater. 7 1349

    Article  Google Scholar 

  70. Tennakone K, Kumara G R R A, Kumarasinghe A R, Wijayantha K G U and Sirimane P 1995Semicond. Sci. Tech.,10 1689

    Article  Google Scholar 

  71. Kalyanasundaram K and Nazeeruddin Md. K 1992Chem. Phys. Lett. 193 292

    Article  CAS  Google Scholar 

  72. Nazeeruddin Md. K and Kalyanasundaram K 1990Inorg. Chem.,29 1888;

    Article  Google Scholar 

  73. Kalyanasundaram K, Grätzel M and Nazeeruddin Md. K 1992J. Phys. Chem.,96 5865;

    Article  CAS  Google Scholar 

  74. Kalyanasundaram K and Nazeeruddin Md. K 1990J. Chem. Soc., Dalton Trans, 1657

  75. Matsui K, Nazeeruddin Md. K, Humphry-Baker R, Grätzel M and Kalyanasundaram K 1992J. Phys. Chem.,96 10587;

    Article  CAS  Google Scholar 

  76. Matsui K, Nazeeruddin Md. K, Humphry-Baker R, Vlachopoulos N, Grätzel M, Hester R E and Kalyanasundaram K submitted

  77. Müller E, Nazeeruddin Md. K, Grätzel M and Kalyanasundaram K 1996New J. Chem. 30 759

    Google Scholar 

  78. Scandola F, Indelli M T, Chiorboli C C and Bignozzi C A 1991Top. Curr. Chem.,158, 73;

    Article  Google Scholar 

  79. Bignozzi C A, Scandola F 1993 in “Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds”, (eds) K Kalyanasundaram, M Grätzel, Kluwer Academic, Dordrecht, Netherlands

    Google Scholar 

  80. Wiederkehr A 1990Biological redox reactivity of monomeric and aggregated form of molecules in solution and at interfaces, Doctoral dissertation, EPF-Lausanne Nr. 872

  81. Tributsch H and Willig F 1995Solar Energy Mater. Sol. Cells,38 355

    Article  CAS  Google Scholar 

  82. Moser J and Grätzel M 1993Chem. Phys. 176 493

    Article  CAS  Google Scholar 

  83. Eichberger R and Willig F 1990Chem. Phys. 141 159; Willig F 1990J. Am. Chem. Soc.,112 2702

    Article  CAS  Google Scholar 

  84. Lanzafame J M, Palese S, Wang D, Miller R J D and Muenter A 1994J. Phys. Chem. 98 11020

    Article  CAS  Google Scholar 

  85. Liu D, Kamat P V 1993J. Phys. Chem.,97 10769

    Article  CAS  Google Scholar 

  86. Rehm J M, McLendon G, Nagasawa Y, Yoshihara K, Moser J and Grätzel M 1996J. Phys. Chem.,100 9577

    Article  Google Scholar 

  87. Moser J, Grätzel M, Durrant J R and Klug D R 1996 in ‘Femtochemistry, Ultrafast Chemical and Physical Processes in Molecular Systems’, (ed.) M Chergui, World Scientific, Singapore, p. 495

    Google Scholar 

  88. Yan S G and Hupp J T 1996J. Phys. Chem. 100 6867

    Article  CAS  Google Scholar 

  89. Huang S-Y, Kavan L, Exnar I and Grätzel M 1995J. Electrochem. Soc.,142 L142

  90. Huang S-Y, Kavan L, Kay A, Grätzel M and Exnar I 1995Active and Passive Elec. Comp.,19 23

    Article  Google Scholar 

  91. Redmond G and Fitzmaurice D 1993J. Phys. Chem.,97 11081

    Article  CAS  Google Scholar 

  92. Hagfeldt A, Vlachopoulos N and Grätzel M 1994J. Electrochem. Soc.,142 L82

  93. Bonhôte P, Moser J E, Vlachopoulos N, Walder L, Zakeeruddin S M, Humphry-Baker R, Pechy P and Grätzel M 1996J. Chem. Soc., Chem. Commun. 1163

  94. Bonhôte P, Vlachopoulos N, Tingry S, Comte P and Grätzel M 1997J. Amer. Chem. Soc., submitted

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyanasundaram, K., Grätzel, M. Photovoltaic performance of injection solar cells and other applications of nanocrystalline oxide layers. J Chem Sci 109, 447–469 (1997). https://doi.org/10.1007/BF02869206

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02869206

Keywords

Navigation