Skip to main content
Log in

Abstract

LetQ(u 1,…,u 1) =Σd ij u i u j (i,j = 1 tol) be a positive definite quadratic form inl(≥3) variables with integer coefficientsd ij (=d ji ). Puts=σ+it and for σ>(l/2) write

$$Z_Q (s) = \Sigma '(Q(u_1 ,...,u_l ))^{ - s} ,$$

where the accent indicates that the sum is over alll-tuples of integer (u 1,…,u l ) with the exception of (0,…, 0). It is well-known that this series converges for σ>(l/2) and that (s-(l/2))Z Q (s) can be continued to an entire function ofs. Let σ be any constant with 0<σ<1/100. Then it is proved thatZ Q (s)has ≫δTlogT zeros in the rectangle(|σ-1/2|≤δ, T≤t≤2T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [RB, KR]1 Balasubramanian R and Ramachandra K, On the zeros of a class of generalised Dirichlet series III,J. Ind. Math. Soc. 41 (1977) 301–315

    MathSciNet  MATH  Google Scholar 

  • [RB, KR]2 Balasubramanian R and Ramachandra K, On the zeros of a class of generalised Dirichlet series IV,J. Ind. Math. Soc. 42 (1978) 135–142

    MathSciNet  MATH  Google Scholar 

  • [EH] Hecke E, Über die bestimmung Dirichletscher reichen durch ihere functional Gleichung,Math. Ann. 112 (1936) 664–699

    Article  MathSciNet  Google Scholar 

  • [EL] Landau E, Über die Anzahl der Gitter punkte in gewissen Bereichen,Gött. Nachr. (1912) 687–770

  • [HLM,RCV] Montgomery HL and Vaughan RC, Hilbert's inequality,J. London Math. Soc. 8(2) (1974) 73–82

    Article  MathSciNet  MATH  Google Scholar 

  • [WM] Müller W, The mean-square of Dirichlet series associated with automorphic forms,Mh. Math. 113 (1992) 121–159

    Article  MATH  Google Scholar 

  • [KR]1 Ramachandra K, On the zeros of a class of generalised Dirichlet series V,J. Reine Angew. Math. 303/304 (1978) 295–313

    MathSciNet  Google Scholar 

  • [KR]2 Ramachandra K,A simple proof of the mean fourth power estimate for ζ(1/2 + it) and L(1/2+it, ξ), Annali della Scoula Normale Superiore di Pisa, classe di sci, Ser IV, Vol. I (1974) 81–97

    MathSciNet  Google Scholar 

  • [KR]3 Ramachandra K, Application of a theorem of Montgomery and Vaughan to the zeta-function,J. London Math. Soc. 10 (1975) 482–486

    Article  MathSciNet  MATH  Google Scholar 

  • [KR]4 Ramachandra K, Some remarks on a theorem of Montgomery and Vaughan,J. Number Theory 11 (1979) 465–471

    Article  MathSciNet  MATH  Google Scholar 

  • [KR,AS] Ramachandra K and Sankaranarayanan A, Notes on the Riemann zeta-function,J. Ind. Math. Soc. 57 (1991) 67–77

    MathSciNet  MATH  Google Scholar 

  • [AS] Sankaranarayanan A, Zeros of quadratic zeta-functions on the critical line,Acta Arith. 69 (1995) 21–38

    MathSciNet  MATH  Google Scholar 

  • [HMS] Stark H M,L-functions and character sums for quadratic forms-I, Acta Arith. 14 (1968) 35–50

    MathSciNet  MATH  Google Scholar 

  • [ECT] Titchmarsh E C, The theory of the Riemann zeta-function, revised by D R Heath-Brown (1986) (Clarendon Press, Oxford: Oxford Science Publication)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandra, K., Sankaranarayanan, A. Hardy’s theorem for zeta-functions of quadratic forms. Proc. Indian Acad. Sci. (Math. Sci.) 106, 217–226 (1996). https://doi.org/10.1007/BF02867431

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02867431

Keywords

Navigation